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Abstract

We analyze competitive pressures in a sequence of auctions with a growing number
of bidders, in a model that includes private and common valuations as special cases.
We show that the key determinant of bidders’ surplus (and implicitly auction revenue)
is how the goods are distributed. In any setting and sequence of auctions where the
allocation of good(s) is concentrated among a shrinking proportion of the population,
the winning bidders enjoy no surplus in the limit. If instead the good(s) are allocated
in a dispersed manner so that a non-vanishing proportion of the bidders obtain objects,
then in any of a wide class of auctions bidders enjoy a surplus that is bounded away
from zero. Moreover, under dispersed allocations, the format of the auction matters. If
bidders have constant marginal utilities for objects up to some limit, then uniform price
auctions lead to higher revenue than discriminatory auctions. If agents have decreasing
marginal utilities for objects, then uniform price auctions are asymptotically efficient,
while discriminatory auctions are asymptotically inefficient. Finally, we show that in
some cases where dispersed allocations are efficient, revenue may increase by bundling
goods at the expense of efficiency.
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1 Introduction

In many markets, including treasury auctions, IPO’s, security markets, and internet based
markets, large numbers of agents compete for a limited supply of resources. Moreover, these
markets use a variety of rules for setting prices including uniform price auctions, pay-your-
bid auctions, hybrids of these, as well as many other rules. A fundamental question arises
as to when competitive pressures render the choice of auction mechanism irrelevant.

The mechanism design literature provides a partial answer to this question in the revenue
equivalence theorem (Myerson (1981), Riley and Samuelson (1981), Ausubel and Cramton
(1998), Reny (1999), Jehiel and Moldovanu (2001b), Krishna and Maenner (2001)), which
states that if a unit of a good is to be allocated and bidders have independent information and
satisfy some regularity conditions on interdependencies,1 then the choice of auction formats
in a given class is irrelevant. Although revenue equivalence extends to multiple units,2 it
does not hold when types are correlated or affiliated. With such correlation in information,
auctions resulting in the same allocation of goods can result in different revenues (e.g., see
Milgrom and Weber (1982)).

While the independent case is of some interest, there are many important applications,
including most of those mentioned above, that involve some correlation or affiliation of infor-
mation. The main focus of this paper is to look beyond independent types and understand
when and to what degree the choice of an auction mechanism matters in large economies;
and in particular how this is related to the way that goods are being allocated.

One might guess that for some standard auction formats where the previous literature
gives us some guide to the structure of equilibria we could make direct calculations of the
limiting outcome. However, even in the simplest cases this is an illusion. For example, even
with a first price auction in a pure common value setting, where there is a known closed form
solution for equilibrium strategies, it is difficult to directly compute the bidders’ surplus in
the limit. Hence, we follow the more general framework of mechanism design and work with
what are commonly referred to as direct revelation mechanisms. As it turns out, working
with this more abstract structure provides much more direct insight and allows us to prove
some general results about limiting bidders’ surplus and auction revenue. Moreover, in many
cases of interest, one can then go back and apply these results to deduce what will happen
standard auctions, as we will discuss.

A main insight of the paper is that the concentration or dispersion of the allocation
of goods is the critical determinant of whether bidders in auctions enjoy any surplus, and
whether (and how) the auction format impacts revenue and efficiency.

To be more specific, we examine sequences of auctions with growing numbers of bidders,
in a model (building on that of Milgrom (1981)) including private and common valuations
as special cases. We consider the allocation of some quantity of a good that might vary with
population size. The key distinction that we uncover is between two cases. One case is what
we call concentrated allocations: where the equilibrium allocation of the good is concentrated

1See Ausubel and Cramton (1998) and Reny (1999) for versions that cover classes of interdependent types
under independence.

2See Weber (1983), Englebrecht-Wiggans (1988), and Krishna and Perry (1997). It also extends, in an
approximate sense, to allow for uncertainty about supply and multiple unit demands as shown by Swinkels
(2001).
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among a vanishing fraction of bidders. The other case is what we call dispersed allocations:
where the equilibrium allocation of the good is dispersed among a non-trivial proportion of
the bidders.

Before proceeding any further, let us point out several important aspects of these defini-
tions of concentrated or dispersed allocations.

First, these definitions apply to the allocations that result in equilibrium. The charac-
terization of auctions in terms of equilibrium allocations allows us to make statements that
do not depend directly on specific features of the auctions such as whether there is a reserve
price, how winning bidders are determined, how prices are determined, etc.. This has the
advantage of making the intuition clear and direct, and makes for a sharp and tight charac-
terization. It has a disadvantage as well: one has to have knowledge of some properties of
an auction’s equilibrium allocations, and clearly the allocation is endogenous. Nevertheless,
the classification of whether or not the allocation turns out to be concentrated or dispersed
is often straightforward. For instance, as we shall discuss, a concentrated allocation will
necessarily result if the quantity of good to be allocated is a vanishing fraction of n, or when
there is some private component to the valuation and agents have no limit on the amount
they desire. A dispersed allocation will necessarily result if bidders have a finite bound on
the amount of the good that they desire and the amount of the good grows in proportion to
n.

Second, these definitions apply to sequences of auctions and concern the limiting allo-
cations, thus all of our results are about asymptotics. We present some results on rates of
convergence so that we have a sense of how “large” an economy has to be in order for the
results to apply.

Third, the relevant factor of the distinction between concentrated and dispersed alloca-
tions is the relative holdings of the good, and so these conditions are not logically related to
straight identifications of numbers of objects. For instance, a sequence of auctions of only
one object, but such that the object is simply randomly given away (ignoring bids) so that
each bidder has an equal chance of getting the object would be a dispersed allocation. In
contrast, a sequence of auctions of increasing numbers of goods, but such that all goods go
to the single highest bidder would be a concentrated allocation, even though the number of
goods is increasing. We discuss this in detail in what follows.

Fourth, the definitions of concentrated and dispersed allocations do not keep track of
what the efficient allocation is; rather just what the equilibrium allocation is. At times these
will be related, and we discuss efficiency at several points in the paper. As we remark at
several points, however, most of the results in the paper apply directly to the equilibrium
allocations, and only indirectly to what might be efficient.

We establish this distinction between concentrated and dispersed allocations through a
series of results that can be briefly described as follows.

(1) Concentrated Allocations-

(a) In any sequence of auctions with concentrated allocations the per- unit surplus
enjoyed by the bidders goes to zero.3 The intuition behind this is that under

3The surplus of a bidder is the total utility obtained from objects won in the auction less payments in
the auction.

3



concentrated allocations there is a strong competition for all goods. For any unit
of the good that is obtained by some bidder, there is a bidder with nearly the
same information and preferences who has a low probability of getting a unit of
the good. This results in a competition that drives away all of the surplus that
goes to the winning bidders.

(b) The above implies an “asymptotic revenue equivalence result” for concentrated
allocations: If two sequences of auctions lead to approximately the same concen-
trated allocations, then they lead to the same limiting revenue.

(c) Another corollary is that any sequence of auctions that leads to an approximately
efficient and concentrated allocation, leads to the optimal revenue in the limit.
Hence, a variety of standard auctions (first, second, English) will provide full
revenue extraction in the limit.

(d) We can also establish rates of convergence for standard auctions when the item is
indivisible. For instance, mechanisms that award the entire good to the highest
bidder lead to a per-unit surplus to bidders that is of the order 1/n where n is
the number of bidders. The rate of convergence of both bidders’ surplus and
revenue applies to many standard auctions such as the first, second price, and
English auctions. We show how this can be used to study endogenous (costly)
entry decisions regardless of the auction format.

(e) For the case where the efficient allocation is concentrated, we describe simple
mechanisms that extract all revenue (as if the auctioneer was fully informed) in
the limit.

(2) Dispersed Allocations-

(a) In any sequence of auctions that results in dispersed allocations, if there is any
private aspect to bidders’ valuations and an individual rationality constraint is
satisfied, then bidders enjoy a per-unit surplus that is bounded away from 0. This
is the counterpoint to (1-a) and has the following intuition. Here the allocation
of goods is such that there are some goods and corresponding winning bidders for
whom any other bidder with similar information and preferences also expects to
obtain some goods. For these goods there is less competitive pressure and so at
least some surplus is enjoyed by the bidders in such sequences of auctions.

Under dispersed allocations, with any correlation among the information observed by
bidders, the choice of auction format matters in some systematic ways. In some cases
where efficient allocations are dispersed, we compare some standard auction formats
to find that:

(b) If bidders have “flat” demand curves,4 then uniform price auctions result in rev-
enues that are higher, by an amount bounded below, than discriminatory auctions,
even when resulting in exactly the same allocations.

4That is, a bidder values objects equally up to some number of items that they wish to purchase. This
includes, for instance, single unit demands.
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(c) With downward sloping demand function and private (possibly correlated) values,
the uniform auction is asymptotically efficient, while in contrast, discriminatory
auctions are necessarily asymptotically inefficient.

(d) Efficient auction mechanisms can be dominated in terms of revenues by auctions
that inefficiently bundle objects together for sale.

(e) If the efficient allocation is dispersed, then any sequence of mechanisms which
extract full revenue in the limit must violate an individual rationality constraint.5

This together with (1-e) shows how optimal mechanism design depends on the
structure of the efficient allocation.

The fact that the choice of auction matters under dispersed allocations contrasts with
what we saw under concentrated allocations. We note, however, that this contrast is
not an obvious implication of other differences between concentrated and dispersed
allocations: for instance, bidders’ surplus depends on whether the allocation is concen-
trated or dispersed. That is, it is conceivable that even though dispersed allocations
lead to some bidders’ surplus, the surplus would be the same across any auctions that
led to similar allocations. However, this turns out not to be true. The details depend
on how bidders must behave to be sure they get an object when they have high values,
and we discuss this in some detail.

1.1 Contributions and Relation to the Literature

Two closely related papers in terms of examining the asymptotics of revenue across auction
formats are Kremer (2002) and Bali and Jackson (2002). Both papers consider auctions
with growing numbers of bidders and a single unit of a good for sale. Kremer shows that in
some common values settings the expected revenues of first price, second price and English
auctions all converge to the expected value of the object.6 Bali and Jackson show that
such convergence holds in a across a wide class of auctions and information settings. The
intuition is that in a large population the bidder observing the highest signal (and winning
the object) faces competition from bidders who have nearby signals and hence almost the
same information. Such competing bidders can act as if they had a slightly higher signal no
matter what the payment mechanism, and so the winning bidder’s surplus will be competed
away. This ties down the revenue of the auction simply through incentive compatibility.

The results we show here broaden our understanding in several directions. First, we show
that the key characteristic determining whether or not mechanisms matter is the allocation
is dispersed or concentrated. So, the asymptotic revenue equivalence and full extraction
result is not restricted to single object auctions, but extends provided the allocation is
concentrated among a shrinking set of bidders. Moreover, we show that the size of the
surplus going to winning bidders as a function of the population is of the order 1

n
. This tight

bound is useful, for example, in characterizing endogenous entry. Third, and perhaps most

5The type of individual rationality constraint in question is what we call ’safety’. It is stronger than the
standard interim constraint, but weaker than an ex-post constraint. It is equivalent to interim individual
rationality under independent signals, but slightly stronger otherwise.

6See Goeree and Offerman (1999) for a related result.
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importantly, we show that under dispersed allocations competition no longer ties down the
asymptotic revenue and the specifics of the auction make a significant difference, both in
terms of revenue and efficiency. Moreover, we show that under dispersed allocations (with
some minimal private value component to valuations), bidders enjoy non-vanishing surplus.
Thus, we develop an explicit understanding of how the way in which goods are allocated
determines the extent to which competitive forces dictate price formation.

We make two other small remarks before proceeding.
Our work also has some side implications for how prices can aggregate information in

large economies and how that depends on the price setting mechanism. Pesendorfer and
Swinkels (1997) examined purely common value settings, and showed that whether or not
price converges to value in large uniform price auctions depends on whether or not both
the number of bidders getting objects and the number of bidders not getting an object go
to infinity. Since we show that different auction formats lead to different revenues with
dispersed allocations, we can deduce that this nice property of information aggregation that
is enjoyed by uniform price auctions with large numbers of objects is not exhibited by other
prominent auctions. In particular, for discriminatory price auctions, not even the average
price (nor the max, min, or any order statistic) converges to value. We discuss this in more
detail in what follows.

Finally, our work also points out some situations where simple mechanisms extract nearly
all of the revenue. Crémer and McLean (1985, 1988) (see also McAfee and Reny (1992))
have shown that with some correlation in information a seller can extract the full value of
an object in auctions of a single object.7 However, such mechanisms are quite complicated
and depend critically on knowledge of the underlying distribution of information. As our
asymptotic revenue equivalence results show, the complicated mechanisms required for full
revenue extraction are not needed when there are large numbers of bidders and concentrated
allocations are efficient. In these cases any sequence of auctions that is approximately efficient
will also fully extract revenue in the limit. Most importantly, one can use standard auction
formats that are independent of the distribution of information in the society (and even
when information is independent).

2 Information and Preferences

Economies

A sequence of economies is indexed by n, the number of agents in the economy. A non-
random quantity Qn of a good is to be sold in economy n. It may be fully divisible or may
come in indivisible units. Through randomization in the allocation, indivisible units may in
effect be divided. We will be addressing conditions relating to Qn that identify when and
how differences in auction formats appear.

Information

7The auctions we consider in obtaining the lower bound of 1
n on the surplus going to bidders place an

upper limit on the price paid and only have payments made by winning bidders. These conditions are violated
by the Crémer-McLean style mechanisms, explaining why their full extraction results do not contradict our
convergence rates.
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Information is described by a framework that we borrow from Milgrom (1981), as de-
scribed in detail below. Note, however, that through much of the paper we do not assume the
monotone likelihood ratio property. This information structure is particularly suited to the
discussion of growing sequences of economies, all based on the same underlying information
structure. We use upper case letters to denote random variables and lower case letters to
denote realizations. We use f to denote a density or conditional density of a random variable
and F to denote a distribution. In some cases when it may be unclear to which random
variables we refer, we use subscripts such as fX (·) , while when it is clear we will omit the
subscripts.

Each agent i ∈ {1, . . . , n} in economy n observes a private signal Si that takes on values in
[0, 1]. There is also an underlying random variable X taking on values in [0, 1]. The Si’s are
independently and identically distributed conditional on X. This conditional distribution of
Si given X is described by the density function f (si|x).8 We assume that the unconditional
(marginal) density of each Si, f(si), is positive for all si.

Let S denote the vector of signals S1, . . . , Sn and let S−i denote the vector of signals
omitting Si. Let Y (k) denote the k-th order statistic of the signals S and let Y−i(k) denote
the k-th order statistic of the signals S−i.

We also assume that:

(A1) There exists α > 0 such that for almost every x the density of X conditional on Si

satisfies
|f(x|si)− f(x|s′i)| < α|si − s′i|f(x|s′i).

(A1) is a Lipschitz condition that implies uniform continuity in signals across x.9 The
important implication of this condition is that two nearby signals provide similar information
about the realization of X.

Preferences

Agent i’s valuation for the good is described by v : [0, 1]2 → [0, 1], where v (si, x) is i’s
valuation given the realizations (si, x) of i’s signal and of the state variable. In this setting,
X represents an objective quality of the good or part that is common to all bidders; and the
signal Si has a dual role: it contains information regarding X and also represents a personal
taste (see Milgrom (1981)). This framework includes as special cases settings of pure private
values, where v (si, x) = si, and pure common values, where v (si, x) = x.

The following condition requires that at least one of the variables be important, and that
there is some upper bound on the derivative with respect to the private signal.

(A2) v (si, x) is differentiable and non-decreasing in both variables. Moreover, there exist
ρ > 0 and γ > 0 such that dv

dsi
+ dv

dx
> ρ and dv

dsi
< γ.

Condition (A2) is important in implying that signals have some importance, either di-
rectly in terms of private values, or in providing some information about preferences through

8The assumption that the random variables have continuous distributions is made to simplify the expo-
sition, but is not critical to the results.

9For most of our results it is sufficient to assume only uniform continuity.
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the common component. The upper bound also puts some limit on how sensitive preferences
are to information.

A Private Value Component

We sometimes refer to situations in which there is some private value component to the
valuation. This does not have to be a case of pure private values, but is captured by the
following definition.

A good has a private value component if there exists τ > 0 such that dv
dsi
(si, x) > τ for

any (si, x).
In the first part of our analysis, bidders have “flat demand curves.” That is, the payoff

to a bidder from consuming an amount qi is simply

v(si, x)qi.

This assumption provides for a more straightforward exposition in the first part of the
paper, without much effect on the qualitative results.10 Once we get to the case of dis-
persed allocations, however, this assumption starts to have important consequences. Thus,
in Section 4.4 we explicitly account for how utility depends on quantity consumed.

Mechanisms

Invoking the well-known revelation principle, we restrict attention to direct mechanisms.11

A mechanism in the n-th economy is a pair of functions (qn, tn), where

1. qn : [0, 1]n → IRn is an allocation rule that assigns quantities to bidders as a function
of the profile of announced signals s, such that

∑n
i=1 q

n
i (s) ≤ Qn, and

2. tn : [0, 1]n → IRn
+ is a payment function that specifies the payment each bidder makes

as a function of the profile of announced signals s, where ti (s) denotes the payment of
bidder i.

We make three remarks about the allocation and payment functions. First, the allocation
function does not necessarily allocate all of Qn. This allows for the incorporation of reserve
prices into the auctions considered. Second, tni can be positive even when qni is not. Thus,
the specification allows for bidders to pay even when they do not receive any allocation, and
so it allows for features such as entry fees and “all-pay” requirements. Third, qni and tni can
be thought of as expected allocations and payments so that randomization is permitted.

10Under concentrated allocations, assuming bidders who see similar signals have similar demands, com-
petition still drives their surplus to zero. Under dispersed allocations, bidders still enjoy some surplus and
mechanisms matter.

11Regarding existence: under our information and preference assumptions, there exists a (symmetric)
equilibrium for a wide variety of auction formats (including all the standard ones) if the tie-breaking is
allowed to be endogenous (see Jackson, Simon, Swinkels, and Zame (2002)), and even with fixed tie-breaking
for the case of private and possibly correlated values (see Jackson and Swinkels (2001)). Regardless of whether
one deals with a pure or mixed strategy equilibrium or the nature of the tie-breaking, the corresponding
direct mechanism is handled by our approach in this paper, and so the results here apply.
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In some of the examples we consider mechanisms that treat bidders symmetrically. Most
of the results, however, apply to asymmetric mechanisms. We will be explicit in noting when
symmetry is assumed.

Payoffs and Incentive Compatibility

Bidders are risk neutral, and so under a mechanism (qn, tn) the expected surplus (or
payoff) obtained by bidder i who has a signal si and declares s′i is

Surni (si, s
′
i) = E [qni (s

′
i, S−i) v (si, X)− tni (s

′
i, S−i) |Si = si] .

Note that Surni is a function of the mechanism (qn, tn), but we suppress this notation as the
mechanisms will usually be given.

Incentive compatibility is written as

Surni (si, si) ≥ Surni (si, s
′
i)

for each i, si, and s′i.
12

Individual Rationality

In what follows we refer to different forms of participation constraints, depending on the
timing with respect to which they are applied. We state a familiar one here and defer the
other definitions until they are needed.

A mechanism (qn, tn) is interim individual rational if

Surni (si, si) ≥ 0

for each i and si.

2.1 Concentrated versus Dispersed Allocations

One of the main insights in this paper is the difference between concentrated and dispersed
allocations.

Let qn ≡ Qn

n
denote the per-capita supply of objects for sale, and P be the (unconditional)

probability measure over Si.

Concentrated Allocations:

A sequence of allocation functions {qn} is concentrated if for every b > 0 there exists an
n′ such that for n > n′ and every i

P

({
E

[
qni (S)

q̄n
|Si

]
≥ b

})
< b.

Dispersed Allocations:

12As usual, all conditions are required to hold only almost surely and we omit such mention in what
follows.
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A sequence of allocation functions {qn} is dispersed if there exists b > 0 such that for
infinitely many n

P

({
E

[
qni (S)

q̄n
|Si

]
≥ b

})
≥ b,

for a number of agents i that is at least bn.

In what follows, we refer to a sequence of mechanisms as being concentrated or dispersed
if their corresponding allocation functions are.

The intuition behind these definitions is that a completely evenly dispersed allocation
would give qni = qn to each bidder, so that

qn
i

qn
would be 1. If this expression is going to

zero for almost all bidders, then the allocation is concentrated in the hands of just a small
proportion of the bidders (i.e., those who saw certain signals), while if it is not vanishing for
some non-trivial proportion of bidders (and so one can expect to get objects conditional on
seeing a non-trivial range of signals) then there is reasonable dispersion.

Let us make a few remarks about the details of the definitions.
First, they are defined relative to the per-capita supply of the good. It is possible to

have a dispersed allocation even if qn → 0 and each bidder’s allocation is actually going to
0. Similarly, it is possible to have a concentrated allocation even when qn → ∞ and where
every bidder is getting an arbitrarily large allocation in the limit, but the highest signal
bidders are getting the lion’s share.13 So the important intuition regarding competition that
emerges here is that it is the relative disparities in allocations that determine whether or not
surplus is competed away in large auctions.

Second, the definitions allow for asymmetric mechanisms, so that different bidders might
have different expectations under the mechanisms in question. However, it is important to
note that concentration requires a uniformity in the convergence across bidders i. Without
this, it would be possible, for example, to have non-vanishing fractions of bidders expecting
to get significant fractions of the objects at any date. For example, suppose that objects
are simply randomly given to agents with labels between n/2 and n in auction n. Here,
any given bidder eventually expects to get no objects at all, and yet the allocation is clearly
not what one would want to call “concentrated.” Thus, the uniformity in convergence rates
across bidders under the definition of concentration is critical.

Third, there is a gap between the definitions of concentrated and dispersed allocations.
Some sequences of mechanisms do not fall into either category. This gap is in fact neces-
sary given that we wish to account for asymmetric mechanisms. For instance, consider the
following situation. There are n bidders and the object is always simply given to bidder
1 at a price of 0.14 This clearly fails to be a concentrated sequence under the definition.
This is important, because the results that are claimed for sequences of concentrated mech-
anisms (e.g., bidders’ surplus going to 0) would not be true for this particular sequence of

13These features make the conditions different, for instance, from checking whether Qn and n − Qn are
getting large as in the double-largeness condition of Pesendorfer and Swinkels (1997). In fact, n−Qn does not
play any role in our analysis, and Qn only plays a role in the denominator in determining relative allocations.
This means that there are some differences between conditions that ensure information aggregation, and those
which correspond to surplus extraction.

14This is not such a silly mechanism, as note that it corresponds to an asymmetric equilibrium in a second
price auction where bidder 1 always bids 1 regardless of her signal and all other bidders always bid 0.
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asymmetric mechanisms. Note also, that it would not make sense to call this a “dispersed
allocation,” as the objects are always going to one bidder. The reason that our results do
not apply is that the particular asymmetry in the mechanism has eliminated all competition
for one bidder. Thus, allowing for asymmetric mechanisms requires some gap between the
definitions. Note, however, that if one restricts attention to symmetric mechanisms, then
the definitions are essentially complementary.

Finally, whether the allocation is concentrated or dispersed depends on the setting and
the equilibrium that will result in a given sequence of auctions. Looking at things through the
lens of the allocation allows us to extract the general insight regarding how competitive forces
work in large economies and how this depends on the distribution of goods. Nevertheless, it
is important to be able to tell which type of allocation applies in different situations. The
classification of whether or not the allocation turns out to be concentrated or dispersed is
often straightforward. That is, many situations can be categorized into general classes where
it is clear which type of allocation will result under most standard auction formats. A simple
classification is as follows.

• A concentrated allocation will necessarily result if: the quantity of good to be allocated
(Qn) is a vanishing fraction of n, and the good is (asymptotically and approximately)
efficiently allocated and there is some private component to the valuation.

• A dispersed allocation will necessarily result if: Bidders have a finite bound on the
amount of the good that they desire and the amount of the good grows in proportion
to n.

The above only provides a rough classification, but still covers many of the cases of in-
terest. Auctions of limited numbers of objects (e.g., an art auction) will generally fall into
the first case and have a concentrated allocation, while auctions of many objects (e.g., trea-
sury auctions) will often fall into the second case and have dispersed allocations. Given the
variety of mechanisms and settings admitted in the model, a fuller characterization of when
concentrated versus dispersed allocations result would be quite complicated, without adding
much insight. We provide a fuller treatment of two prominent auction formats (uniform and
discriminatory) in what follows. We now turn to analyzing auctions under the two types of
allocations.

3 Concentrated Allocations

We first examine sequences of mechanisms that result in concentrated allocations. In concen-
trated allocations, for any bidder who gets a significant proportion of the good we can find
another bidder who receives a nearby signal (and hence has nearby beliefs and valuation),
but only gets a relatively small amount of the good. The competition from such nearby
bidders eliminates the surplus enjoyed by all bidders.

The following “continuity” lemma is useful in establishing this result and some others
that follow. The lemma states that the surplus obtained by a given type is nearly obtainable
by a nearby type who pretends to be of the given type.
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Lemma 1 If (A1) and (A2) are satisfied, then in any sequence of interim individually ra-
tional mechanisms and for any n

|Surni (si, s′i)− Surni (s
′
i, s

′
i)| ≤ (2α + γ) |si − s′i|En [qni (S) | Si = s′i] ,

where α and γ are as defined in (A1) and (A2).

Lemma 1 follows from the continuity assumptions and the structure of information we
outlined. The intuition is straightforward: altering an agent’s signal slightly, but not their
report, leads to nearly the same beliefs, preferences, and expectations of the allocation.
Under individual rationality, the payments cannot vary much more drastically than the
allocation. So the surplus cannot vary by much relative to the total expected allocation.

Once we couple Lemma 1 with incentive compatibility, we deduce that nearby signals
must lead to similar expected surpluses. An implication of the above Lemma is that if the
allocation sequence is concentrated, then agents compete away their surplus, which is stated
as follows.

Theorem 1 If (A1) and (A2) hold, then for any sequence of concentrated, interim in-

dividually rational, and incentive compatible mechanisms,
∑

i
Surn

i (Si,Si)

Qn converges to 0 in

probability.15

The intuition behind the theorem is as follows. Under a concentrated allocation, the
circumstances in which a bidder can expect to win non-trivial amounts of objects (in per-
capita terms) is shrinking. That is, the set of signals under which a bidder expects to win
objects is a shrinking set. Nearby signals must lead to expectations of no surplus. Then
given incentive compatibility, and the continuity noted in Lemma 1, since nearby signals
expect a low surplus, the winning signals must also expect a low surplus. In terms of more
traditional language of competition: the objects are being concentrated in the hands of just a
few winning bidders. As the economy grows, there will also be many other bidders who have
very similar information and preferences to those who end up winning. The competition
between these bidders eliminates the surplus.

3.1 Revenue Equivalence

Theorem 1 implies that the total revenue in an a sequence of auctions with concentrated
allocation functions is the approximate full (expected) valuation of the objects to the win-
ning bidders. As we have not specified the allocation functions beyond being concentrated,
this does not necessarily imply full revenue extraction. For instance, it could be that the
mechanisms never give any objects away and do not result in any revenue.

However, Theorem 1 still provides a revenue equivalence result, in that any two sequences
with similar allocation functions must result in similar revenues. This is stated in the fol-
lowing corollary.

15We actually prove that the expected per unit surplus converges to 0, which implies convergence in
probability since this is a nonnegative random variable.
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Corollary 1 Let (A1),(A2) hold and consider two sequences of incentive compatible and
interim individually rational mechanisms, {(qn, tn)} and {(qn, tn)}, with concentrated allo-
cation functions. If the allocation functions are approximately the same, i.e.,

E [
∑

i q
n
i (S)v(Si, X)− ∑

i q
n
i (S)v(Si, X)]

Qn
→ 0,

then they lead to approximately the same expected revenues:

E [
∑

i t
n
i (S)−

∑
i t

n
i (S)]

Qn
→ 0.

Corollary 1 provides a fairly general asymptotic revenue equivalence theorem, as it applies
with correlated values and/or common values, and the sale of more than one object.16

As we shall see, it is critical to the above result that the mechanisms be concentrated.
Otherwise, mechanisms with identical allocation functions can lead to very different revenues,
even in the limit.

3.2 Optimal Mechanisms

Let us note another important implication of Theorem 1: any sequence of auctions that
results in concentrated and efficient allocations provides full revenue extraction in the limit.
One implication of this is that with large numbers of bidders, auction formats that lead to
efficient and concentrated allocations also lead to approximately full revenue and one does
not need to resort to the complicated and parametric types of mechanisms identified by
Crémer and McLean (1988) and McAfee and Reny (1992). Moreover, this holds in a variety
of settings, including correlated private values, common values, as well as under complete
independence (where Crémer and McLean mechanisms fail to work).

To be careful, we have to argue that there will exist some mechanisms that achieve
efficiency (at least approximately when efficient allocations are concentrated) in order for the
above statements to be non-vacuous.17 Indeed, there exist mechanisms, even symmetric ones,
that will achieve an approximately efficient allocation in a variety of situations, and so full
revenue extraction is feasible. This mechanism even satisfies ex-post individual rationality
constraints and works without the correlation structure inherent in the Crémer-McLean
approach. Without giving a formal argument, let us heuristically describe such mechanisms
in the case where the efficient allocation involves awarding all objects to one bidder.18,19 Pick
some subset of agents and ask them their signals. If symmetry is desired, randomly pick the
agents. Keep this set of surveyed agents of size

√
n, so that it grows with n, but is negligible

16Corollary 1 generalizes the main result of Bali and Jackson (1999), in that it applies to the auctioning
of more than one good, and also allows for entry fees. However, it requires more structure on information
(the mineral rights setting) and on mechanisms than the results of Bali and Jackson (1999).

17We thank a referee for pointing this out.
18With flat demands it is efficient to treat the supply as indivisible. This can be modified as long as the

efficient allocation is concentrated.
19Variations on this sort of “folk” mechanism appear in a number of places. For an auctions version, where

interdependencies in valuations are present, see Jackson (1998). For versions satisfying strategy-proofness
in private values settings, see Cordoba and Hammond (1998) and Kovalenkov (2002).
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in the limit. These agents will not get any of the allocation, so it is incentive compatible
for them to reveal their information. Based on their announcements, estimate X, and then
v(1, X). Randomly order the remaining agents, and make them take it or leave it offers at
the price of v(1, X)− ε, until some agent agrees to buy the objects. This will happen with
very high probability for large enough n, and the object(s) will end up in the hands of an
agent who values them at nearly the maximal possible level.

3.3 Indivisible Goods

A case of concentrated allocations that is of particular interest is where an indivisible good
is to be auctioned to the highest bidder. This covers, for instance, first price, second price,
and English auctions. We focus on this case to get some insight into rates of convergence to
the competitive outcome. We first show that the surplus to the winning bidder decreases at
a faster rate than na−1 for any a > 0. To develop a tight bound on surplus, we also consider
the following condition on the information structure.

(A3) There exists β > 0 such that β > f (si | x) > 1
β
for every si and x.

(A3) bounds the likelihood of any signal conditional on a given X both above and below,
thus limiting the informativeness of any given signal and implying some diversity in the
signals observed.

Theorem 2 Let (A1)-(A3) hold and consider a sequence of incentive compatible and interim
individually rational mechanisms, {(qn, tn)}, which award the entire Qn to a highest signal
observer. The bidders’ surplus (per unit) converges to zero at a rate faster than na for any

a < 1. That is for any a < 1, na
∑

i
Surn

i (Si,Si)

Qn converges to 0 in probability.

The bound in Theorem 2 comes from bounding the conditional probability of winning
for an observer of a given signal. That probability goes to 0 at an exponential rate, even
for signals going to 1 at a rate na (a < 1). This bounds the surplus that can be expected
for high signals. The Lipschitz continuity of information then implies that this surplus is
approximately the same as is enjoyed by the highest signal. The complete proof appears in
the appendix.

We now explore the tightness of this bound. We show that the surplus going to bidders
is at least the order of 1

n
in any case where the good has some private value component, and

so the bounds established in Theorem 2 are tight for a standard class of auctions.

Theorem 3 Let (A1)-(A3) hold and consider a good that has a private value component
and a sequence of incentive compatible mechanisms qn, tn such that all of the good is given
to a single bidder who has the highest signal, and payments (tni (s)) never exceed 1 and are
only made conditional on receiving the object (tni (s) > 0 implies qni (s) > 0).20 There exists

20This “losers do not pay” condition has been studied by Lopomo (2001) in analyzing conditions under
which the English auction is optimal. See Lopomo (2001) for additional discussion of this condition, and
optimal mechanisms subject to it.
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φ > 0 such that the total surplus per unit to the bidders is at least φ
n
for all n. That is, there

exists φ > 0 such that for any n

E [
∑

i Sur
n
i (Si, Si)]

Qn
>

φ

n
.

Theorem 3 shows that the bound established in Theorem 2 is tight. It is proven by
showing that the winner expects a distance between her signal and the next highest signal
that is on the order of 1

n
. This implies, given the private value component, that the winner

expects to have a valuation that is higher than the second highest by an amount that is of
the order of 1

n
. Then, regardless of the particular payment format, incentive compatibility

implies that winner must get a surplus of the order of 1
n
.

If we allow for arbitrary mechanisms, then with correlation among the signals there is
a possibility of extracting full surplus from the bidders, as shown by Crémer and McLean
(1988)21. The full extraction mechanisms are ruled out under Theorem 3 as payments never
exceed the maximum possible value and are only made conditional on receiving the object.
Neither of these conditions are met by the Crémer-McLean style mechanisms, as such mech-
anisms require occasionally large payments and payments even by bidders who do not obtain
the object. These features of Crémer-McLean style mechanisms are not exhibited by many
standard auction formats (e.g., first price, second price, English auctions, etc.) which satisfy
the condition of Theorem 3.

3.4 An Application to Endogenous Entry

We now show that the results regarding the convergence rate of bidders’ surplus are not
simply a technical curiosity, but can be used to provide insight into auctions where the entry
decision is endogenous and costly.22

Suppose that a quantity of the good Q is sold as an indivisible good, and bidders must
pay an (ex-ante) entry fee of c.23 Let us examine the number of entrants and the markdown
in prices as a function of Q and entry cost, c. The novelty is that we establish these relations
without relying on a specific mechanism. We only assume that mechanism does not charge a
bidder unless they get the good (excluding the entry cost), payment never exceeds the upper
bound on the good’s value, and the good has some private value component (we also assume
the information assumptions from the last section).

Theorem 3 tells us that there exists some φ > 0 such that total surplus that goes to
bidders exceeds φQ

n
for any n. Hence, in order for it to be an equilibrium for n and not n+1

bidders to enter (at an ex ante stage before signals are observed) we know that

c ≥ 1

n+ 1

(
φQ

n+ 1

)

21McAfee and Reny (1992) show that this is also true for the continuous signal case, to an arbitrary
approximation.

22For other examples of usefulness of such convergence rates in auctions and bargaining see Satterthwaite,
Rustichini, and Williams (1994) and Neeman (1999).

23We are considering a two stage process where bidders first decide whether to enter or not and then
observe their signals and participate in the auction if they have paid the entry fee.
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or that

n ≥
√
φQ

c
− 1.

This gives us a lower bound on n. Next, let us explore an upper bound. If Q
c
(and hence

n) is large, Theorem 2 bounds the total surplus to be below Q
na for any a < 1. Thus, for n

bidders to be willing to enter we must have

(
1

n

)
Q

na
≥ c,

or (
Q

c

) 1
1+a ≥ n.

Putting these lower and (approximate) upper bounds together leads to

(
Q

c

) 1
1+a ≥ n ≥

√
φQ

c
− 1,

for any a < 1. So, we have obtained an approximation on the number of bidders who will
enter an auction:24

n ∝
√
Q

c

Since the expected surplus excluding entry costs that goes to the bidders is on the order of
Q
n
(Theorems 2 and 3), substituting from the approximation for n we find that the expected

surplus going to bidders in the auction is approximately proportional to
√
Qc. This in turn

implies that the average markdown in price per unit (compared to the winner’s valuation)
is approximately proportional to

√
c
Q
.

4 Dispersed Allocations

We now turn our attention to sequences of auctions with dispersed allocations. First we use
the general mechanism design approach to provide some impossibility result for surplus ex-
traction. We then turn our attention to explicit mechanisms: the uniform and discriminatory
auctions.

4.1 The Impossibility of Full Surplus Extraction

Individual Rationality and Safety

In what follows we consider a strengthening of interim individual rationality. It is useful
to compare it to a standard strengthening is the following condition, which is the following.

A mechanism (qn, tn) is ex-post individual rational if

qni (s)E [v (si, x) |S = s]− tni (s) ≥ 0

24The approximation, of course, is only valid for large n, and so is more accurate if the total value of goods
to be auctioned relative to the entry cost (Q

c ) is large.
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for each i and s.
Ex post individual rationality requires that agents do not over-pay when conditioning

on all signals. While this condition holds for some standard mechanisms in a private values
(possibly correlated) setup, it is often violated when there is any common value component.

We introduce a concept that is intermediate to interim and ex-post individual rationality,
which captures the idea that bidders should not expect to over pay conditional on their own
information - but not independent of the realization of the other signals.

A mechanism (qn, tn) is safe if

E [qni (si, S−i) v (si, X)− tni (si, S−i) |Si = s′i] ≥ 0

for each i, si, and s′i such that s′i ≥ si.

This condition of safety looks like interim individual rationality, except that beliefs are
taken relative to any signal s′i ≥ si rather than si; and hence it is a stronger condition. It
requires that a given type s′i does not expect lower types to over-pay. It is equivalent to
interim individual rationality if signals are independent, and is always implied by ex-post
individual rationality. If the often-assumed monotone likelihood ratio property holds, then
safety is satisfied by many standard auctions, even under common values. This is because a
higher type estimates the common value component to be higher.

There is a major difference in behavior between mechanisms with dispersed versus con-
centrated allocations. The following theorem shows that the (approximate) full-extraction
of revenue that occurs with concentrated allocations will generally not hold with dispersed
allocations.

Theorem 4 Let (A1) and (A2) hold and consider a good that has a private value component,
and a sequence of incentive compatible and safe mechanisms that are dispersed. There exists
φ > 0 such that the expected total surplus per unit obtained by the bidders in the auction is
at least φQn for any n. That is, there exists φ > 0 such that for every n

E

[∑
i

Surni (Si, Si)

]
≥ φQn.

Theorem 4 tells us that under dispersion, if there is any private component to the valu-
ation structure, then bidders will capture some rents.

The theorem itself follows from a simple intuition. We state the intuition for the case
where allocations are to high bidders, but such monotonicity is not essential (see the proof
for details). Under dispersed allocations, a bidder with a high signal could pretend to have a
slightly lower signal and still expect with some non-trivial probability to obtain some of the
object. As long as (i) the high signal bidder does not expect to pay more than what would
be fair for a bidder for the lower signal (the role of the safety condition), and (ii) according to
the high type’s belief a lower type should expect to get a non-trivial fraction of the good (the
role of dispersion); it follows that the high signal bidder could obtain a positive expected
surplus by pretending to have observed the lower signal. By incentive compatibility, the
high-signal observing bidder must get at least this surplus under truthful announcement of
his signal.
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4.2 Non-Existence of Approximately Optimal Mechanisms

An implication of Theorem 4 is that the possibility of designing approximately optimal
mechanisms in terms of extracting full revenue is precluded for the case where the efficient
allocation is dispersed, at least if one wants to respect safety. With independent signals
safety is no stronger than the standard incentive constraint. Hence, there does not exist a
mechanism that achieves first best. With correlated signals, in order to extract full revenue,
especially from high-valued signal observers, one can still resort to methods of à la Crémer
and McLean (1988). The necessary violation of safety, however, means that extracting full
revenues, even in a limiting sense, must involve very sensitive use of the correlation structure.

4.3 Different Mechanisms–Different Revenues

While Theorem 4 shows that the full revenue extraction that held with concentrated allo-
cations fails under dispersed allocations, it does not tell us whether the particulars of the
auction format matter. We now show that under dispersed allocations, the auction format
matters significantly, and this represents a further departure from the results of concentrated
allocations.

For the following result, we concentrate on a particular, but still prominent and interesting
class of dispersed allocations. We return to a more general setting in the next section.

The class we examine here is one such that a quantity Qn is auctioned in indivisible units
and any bidder is awarded (or values) at most one unit. In particular, we look at mechanisms
for which, in equilibrium, the goods are allocated to the Qn bidders with the highest signals.
In this setting, the allocation is dispersed.

To obtain a comparison of revenues of auctions, we work under the familiar strict mono-
tone likelihood ratio property. To simplify the exposition we also assume continuity:

(A4) F (si|x) and f(x) are continuous in x and the Strict Monotone Likelihood Ratio Prop-
erty (henceforth, MLRP) holds:

f (si | x)
f (s′i | x)

>
f (si | x′)
f (s′i | x′)

for all si > s′i and x > x′.

We now show that there is an asymptotic revenue difference between two standard mech-
anisms that have dispersed equilibrium allocations when the number of objects for sale Qn

is proportional to n. The mechanisms we examine are:

• Discriminatory price (pay-your-bid) auction: each bidder submits a bid for a single
unit and pays his bid upon winning.

• Uniform price (pay the highest losing bid) auction: the Qn highest bidders each get a
single unit and pay the highest losing bid.

Note that under (A4) there exist (symmetric) equilibria for both mechanisms and that
they support the same efficient allocation, where the Qn highest signal holders obtain the
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objects.25 We denote the corresponding expected payments by tn,d and tn,u, respectively.

Theorem 5 Let (A2) and (A4) and hold and Qn

n
→ b where 1 > b > 0. The uniform price

auction yields higher expected revenue per capita (and per-unit) than a discriminatory price
auction, by an amount that is bounded below as n → ∞.

We prove the theorem (in the appendix) using the following technique. Using the logic
of Milgrom and Weber (1982), we can show that the expected payment of any given signal
holder in a uniform auction is at least that of his clone in a discriminatory auction. We
then argue that above a certain signal (one that is approximately sure to receive an object
for large n) the payment schedule for a discriminatory auction flattens out, as higher signal
holders can always bid as if they had this lower signal and will still be approximately certain
to get an object. In the uniform auction, however, this payment schedule does not flatten
out, as under strict MLRP observers of higher signals expect higher market clearing prices.
Through this we establish a bound on the difference in revenues.

We provide two simple examples that illustrate Theorem 5. We consider two cases, a
pure private value case and a pure common value case. In both cases the revenue in the
uniform price auction is approximately 16% higher than that of the discriminatory auction,
even as n becomes large.

The following describes the information structure for these examples.

• X is distributed uniformly on [0, 1].

• Signals are distributed uniformly on [0, x], that is (Si|X = x) ∼ U [0, x].

• Qn = n
2
.

Example 1 Private Values.

First, consider the case of private values where v (si, x) = si.
We begin by analyzing the discriminatory (pay-your-bid) auction format. Let FYn/2|Si

and fYn/2|Si
denote the distribution and density functions of the median signal conditional

on Si. A similar argument to that of Milgrom and Weber (1982) shows that a monotonic
symmetric pure strategy equilibrium bidding function in the n-th economy, bn, is the solution
to the following differential equation:

bn′ (si)FYn/2|Si
(si|si) + bn (si) fYn/2|Si

(si|si) = sifYn/2|Si
(si|si) ,

which satisfies the boundary condition bn (0) = 0.This equation has a closed form solution
that implies bn (si) → b (si), where b (si) satisfies the following equation for si < 0.5.26

b′ (si)
si

1− si
+ b (si)

2

1− si
= si

2

1− si
, (1)

25Milgrom (1981) provides the unique symmetric equilibrium strategy in the uniform price auction (see
also Pesendorfer and Swinkels (1997)). An extension of the equilibrium of the first price auction described
in Milgrom and Weber (1982) constitutes a symmetric equilibrium in a multiple unit discriminatory mecha-
nism. It is the unique equilibrium in the class of monotonic symmetric equilibria in which bidders use pure
strategies, but its uniqueness properties are more generally difficult to ascertain.

26Note that FYn/2|Si
(t|t) → min[1, t

1−t ].
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and b′ (si) = 0 for si > 0.5. Together with the boundary condition, b (0) = 0, we get a unique
expression for the limit of the bidding functions, b.

b (si) =

{
2si

3
if si < .5, and

1
3

if si ≥ .5.

Conditional on X = x, we compute expected revenues by computing the average bid over
winning signals. For large n, the distribution of ‘winning’ signals is approximately uniform
over [x/2, x]. Hence, for x < 0.5 we get an approximate average winning bid of27

1

0.5x

∫ x

x/2

2si
3
dsi =

x

2
.

For x ≥ 0.5, the average winning bid converges to:

1

0.5x

(∫ 0.5

x/2

2s

3
ds+

∫ x

0.5

1

3
ds

)
= −x

6
+
2

3
− 1

6x
.

Taking expectations over X, average revenue per unit converges to

∫ 0.5

0

x

2
dx+

∫ 1

0.5

(
−x

6
+
2

3
− 1

6x

)
dx = 0.215.

Let us compare this to the revenue in a uniform price auction. There the Qn highest
bidders get objects and pay the Qn+1 highest bid. There is a symmetric equilibrium (which
involves unique dominant strategies) where each bidder bids his personal valuation, that is,
bn (si) = si. This implies that the price is set to the valuation of the agent who has the
Qn +1 highest signal. The price in a uniform auction thus converges to x

2
as n → ∞. When

taking expecations over x, we find that in the uniform auction the average revenue per unit
converges to ∫ 1

0

x

2
dx = 0.25.

Thus, the revenue in large uniform price auctions is approximately 16% more than that
of discriminatory auctions.

Also note that as Theorem 5 predicts, both mechanisms fail to extract all the surplus
from the bidders even in the limit. The expected average value of the goods to winning
bidders is E[3X

4
] = .325.

Example 2 Common Values.

Next, consider the case of common values where v (si, x) = x.
A similar argument to the one used in the private value setup implies that the symmet-

ric monotonic equilibrium bidding strategy in the discriminatory auction converges to the
solution of the following differential equation:

27This and other calculations below follow from the Dominated Convergence Theorem and the point-wise
convergence of bn to b.
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b′ (si)
2

1− si
+ b (si)

si
1− si

=
4si

1− si
for si < 0.5

and b′ (si) = 0 for si > 0.5. Using the boundary condition of b (0) = 0 we get the following
characterization for the limiting bid function.

b (si) =

{
4si

3
if si < .5, and

2
3

if si ≥ .5.

Note that this is twice the bidding function that we saw in the private values case, and
hence expected revenue per unit converges to .43, which is twice that of the private value
case.

In the uniform price auction, it is an equilibrium for an agent with a signal si to bid the
expected value of X conditional on Yn

2
= Yn

2
+1 = si (see Milgrom (1981)). Straightforward

calculations lead to
bn (si) → b (si) = 2si.

Price per unit is given by the marginal bid b
(
Yn

2
+1

)
. This implies that conditional on X = x,

the price converges to the true value of the good, x. When averaging over x we get revenues
per unit of 0.5.

Again, the uniform price auction leads to revenue that is 16% more than that of a
discriminatory auction.

4.3.1 Information Aggregation and Efficiency Under Flat Demands

The results that different auction formats lead to different revenues also has a side implication
for the ability of different auction formats to aggregate the information of bidders.

Pesendorfer and Swinkels (1997) examine uniform price auctions in a common value set-
ting which has features similar to the previous section. They address the issue of information
aggregation in competitive markets. They argue that while the condition for information
aggregation in the case of a single object identified by Milgrom (1979, 1981) (see also Wilson
(1977)) is very strong, prices aggregate information in cases in which the number of goods
increases with the number of bidders. Specifically, they show that if a double largeness
condition holds: Qn → ∞ and (n−Qn) → ∞, then price converges to value almost surely.28

Our analysis shows that the results in Pesendorfer and Swinkels (1997) do not extend to
discriminatory auctions.29 Of course, in discriminatory auctions, there is no single price to
identify. Nevertheless, one might expect that in a discriminatory price auction the average
price paid would converge to the good’s value. As Theorem 5 and Example 2 show, not only
is the average price not a consistent estimator for the good’s value, it is a biased estimator:
the average price is biased downward even in the limit. This implies that the minimal price

28See Hong and Shun (2000) for a detailed look at how the rate of information aggregation in common
value uniform auctions compares to that of standard single object auctions.

29Again, the concepts of dispersed and concentrated allocations consider the relative distribution of objects,
and so do not correspond to the double largeness condition of Pesendorfer and Swinkels. However, there are
still allocations that are both dispersed and doubly large.
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being paid is also biased downward, and as the example shows, so is the median price. It
also shows that the highest price does not converge to the good’s value.

Finally we note the fact that in a discriminatory auction the average price does not
converge to the asset’s value may lead to efficiency loss. This occurs if the seller has a
reservation value or has a cost of producing the items. In the next section we demonstrate
that the discriminatory auction results in efficiency loss even when the selling decision is
taken as given.

4.4 Efficiency in Uniform and Discriminatory Auctions

In the previous section we examined uniform and discriminatory auctions when agents have
single unit demands. While that case is of interest, we now a develop a wider understanding
of the behavior of uniform and discriminatory auctions under dispersion.

In order to develop a deeper understanding, we specialize to the case of private (but
possibly correlated or affiliated) valuations. At the same time, however, we also generalize
the previous setting in another direction. We allow bidders to have different valuations for
different quantities.30 In particular, a bidder may have a decreasing marginal valuation for
additional objects.31 32 Each agent values m units. The value of the j-th unit for an agent
who has a signal si is given by vj (si) . We modify (A2) to:

(A2’) Agents have private values and decreasing marginal utilities, that is, vk(si) ≥ vj(si)
for any si and j ≥ k and v1(si) > vm(si). {vj(si)}mj=1 are differentiable and increasing
in si. We normalize v1(si) to be equal to si.

The utility of an agent i who is awarded k units and pays ti is

k∑
j=1

vj (si)− ti

In uniform auctions with multi-unit demands, the impact a bidder has on price can affect
equilibrium behavior.33 This can persist even with large numbers of bidders. However, if
there is a small uncertainty about the number of active bidders, then the problem disappears,
as shown by Swinkels (2001). So, we follow Swinkels (2001) (see his definition 3) in assuming
that

(A5) There is some probability τ > 0 that each bidder is inactive. The inactivity is inde-
pendent across bidders and is independent of X.

30The previous analysis was essentially one of a flat demand, where a bidder’s valuation was constant up
to some limit and then zero thereafter. Although we assumed that the marginal valuation was constant, it
is straightforward to extend the analysis to allow for a zero valuation after some limit.

31This is similar to the setting of Swinkels (2001), except that we maintain the structure of affiliated signals
while Swinkels (2001) examines the case of independent signals. This results in some critical differences in
behavior of the auctions.

32See Jackson and Swinkels (2001) for a proof of existence of equilibria for a wide range of auction formats
in such private value settings.

33As is well-known, the fine details of how the price is set matters. For instance, the true Vickrey-Groves
auction form does not encounter such difficulties, while a uniform auction format that is often used in practice
does.
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(A5) can be thought as adding an atom in the distribution of signals at Si = 0. It is also
equivalent to having a random number of participants. The randomness however is quite
mild. Laws of large numbers imply that in the limit there are approximately (1− τ)n active
bidders. But, as mentioned above, this slight randomness helps in ruling out persistent price
manipulation in large economies.

We consider uniform price and discriminatory auctions. In each auction each bidder
submits m bids; we denote the j-th bid of bidder i by bij (si). We order bids so that bij (si)
is non-increasing in j. In either auction format, the Qn highest bids are each awarded a unit
of the good. In the discriminatory auction bidders pay the sum of their winning bids. In
a uniform price mechanism all bidders pay the same price per unit, which is the Qn + 1-st
highest bid.

It is important to note that in both cases our results will apply to all equilibria, including
asymmetric ones or those in mixed strategies. The existence of a pure-strategy equilibrium or
a monotonic equilibrium are important open problems in our setup. However, this existence
does not affect our conclusions.

4.4.1 Allocations and Efficiency

We break our analysis into two parts. First we analyze and compare the auctions with
regards to the allocations they induce and their asymptotic efficiency properties. After that,
we return to the question of revenue comparisons.

Let

u(si, qi) =
qi∑

j=1

vj(si).

This is the utility of agent i observing signal si and obtaining a number of objects qi.

Asymptotic Efficiency

A sequence of allocations is said to be asymptotically efficient if in the limit the per unit
loss of ex-ante total surplus compared to the efficient surplus converges to zero. That is,
letting q∗n(s) be an efficient allocation, qn is asymptotically efficient if

E

[∑
i ui(q

∗n
i (S), Si)

Qn
−

∑
i ui(q

n
i (S), Si)

Qn

]
→ 0.

We focus on the case in which Qn

n(1−τ)
→ a < m, where a > 0. This implies that the

allocation will be dispersed, and that a non-trivial fraction of bidders receive less than their
full demand.34 We maintain this assumption for the remainder of Section 4.

34The case where a ≥ m is a trivial one where all (active) agents can simultaneously be satiated at a bid
of zero. At the other extreme where Qn/n → 0, if the monotone likelihood ratio property holds, then under
either of the auction formats the allocation is approximately efficient and concentrated. In that situation the
full surplus is extracted and the choice of mechanism does not matter in determining either the allocation
or revenue.
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4.4.2 Efficient Allocations in Uniform Price Auctions

We first argue that:

Lemma 2 Consider a setting satisfying (A1), (A2’), and (A5), and a sequence of equilibria
of uniform price auctions. For any ε > 0, there exists a large enough n such that conditional
on any state X the probability that any bidder i can influence the price by more than an ε is
smaller than ε.

Lemma 2 implies that in the limit the outcome of a uniform price auction is competitive.
Price converges to the price that would occur if there was no asymmetric information and
the allocation becomes efficient. Let pnc denote this price (the Qn +1-st highest valuation in
the population) which we term the “competitive” price.

Theorem 6 Consider a setting satisfying (A1), (A2’), and (A5), and any sequence equilib-
ria of uniform price auctions. The equilibrium allocations are asymptotically efficient and
the corresponding equilibrium prices converge to the competitive price in probability; that is,
pn − pnc → 0 in probability (where pn is the equilibrium price, the Qn + 1 highest bid).

Note that this applies to any sequence of equilibria, and not just symmetric ones. The
key is that under (A5), the asymmetric strategies where some bidders bid 1 and others bid 0,
for instance, are not equilibria. The fact that some bidders may be inactive give all bidders
some chance of winning objects in equilibrium.

This theorem tells us that uniform auctions are well behaved in this dispersed allocation
setting, providing efficient allocations and competitive prices. We now turn to the more
muddied analysis of discriminatory auctions.

4.4.3 Inefficient Allocations in Discriminatory Auctions

The analysis of discriminatory auctions is trickier. To get some intuition as to why, note
that in a sense the discriminatory auction is like an asymmetric auction (we discuss this in
more detail below). For instance, with n = m = 2 = Qn each bidder’s high bid competes
with the other bidder’s low bid, and vice versa. With a uniform auction, even with this sort
of asymmetry, the incentives are reasonably straightforward as ones bid is unlikely to affect
the price. However, with a discriminatory auction, one’s bid always affects the price paid
(if an object is won). This asymmetry means that bids are no longer monotonic in value
when compared across bidders. For example a value of 1/2 on a second unit corresponds
to a different signal and hence information about the potential bids of others, than a value
of 1/2 on a first unit. This loss of monotonicity across bidders is the key reason why the
discriminatory auction is inefficient even in the limit.

To simplify the exposition we add two new assumptions. Let Mn denote the efficient
cutoff, i.e., the Qn-th highest valuation. Let

min(si) = sup {v | limnProb (M
n ≥ v|Si = si) = 1} .
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So, min(si) is the minimum of the support of Mn under the limiting distribution conditional
on Si = si.

35

The MLRP and continuity assumptions imply that min (si) is continuous and non-
decreasing.

(A6) In an efficient allocation, at least one type sees a positive probability of obtaining m
units. That is, min (si) < vm (si) for some si.

Since min (si) and vm(si) are continuous, and min (si) lies above vm(si) at si = 0 and
below vm(si) for some si under (A6), it follows that there exists s

∗ so that min (s∗) = vm (s∗) .
We assume that

(A7) min (vm (s∗)) < min (s∗), for some s∗ such that min (s∗) = vm (s∗) .

While (A6) is fairly mild, (A7) has a bit more to it. (A6) is essentially without loss
of generality, as otherwise we can reset m to simply cover units that might be obtained.
(A7) requires that min (s) is increasing between vm(s

∗) and s∗ (or at least comparing the
endpoints). This means that signals convey some information about the support of the
efficient cutoff value Mn, at least in the limit.

Theorem 7 states that under the above assumptions, the discriminatory auction always
yields inefficient outcomes even in the limit.

Theorem 7 Under assumptions (A1), (A2’), (A6) and (A7), any sequence of equilibria of
discriminatory auctions fails to be asymptotically efficient.36

The intuition behind the theorem is quite straightforward. If the allocation were to be
efficient, some of the marginal bids would be coming from bidders who are bidding on their
first unit (with value si), while others would be coming from bidders who are bidding on
their last unit (with value vm (si)). Under (A7), these two classes of bidders near the margin
for an efficient allocation have different beliefs about the cutoff value. This provides for
different bidding behavior of the same valuations. The resulting bids are not monotonic in
values and the allocation fails to be efficient, even approximately and asymptotically.

We conclude this subsection with an example.

Example 3 Inefficiency in Discriminatory Auctions.

• X ∼ U [0.5, 1]

• Si ∼ U [0, X]

• Qn = n and m = 2

• v2(si) = αsi, where 0 < α < 1.

35Note that this may (and generally will) be above 0 even if Mn has full support for each n.
36This theorem also holds if (A5) is added, with effectively no changes to the proof, and so can be compared

to Theorem 6 under (A6) and (A7).

25



In the limit there is a fraction X−v
X

of the bidders with a value of the first unit exceeding
some value v, and a fraction αX−v

αX
of bidders who have a value for their second unit that

exceeds v. The limit of the cutoff Mn, denoted M is the solution of

X −M

X
+

αX −M

αX
= 1 ⇒ M =

αX

1 + α
.

It follows that

min (si) = max

{
α

2 (1 + α))
,
siα

1 + α

}
.

Assumption (A6) is satisfied since min (1) = α
α+1

< α together with the fact that min (0.5) =
α

2(1+α))
> α/2. We conclude that there exists a unique s∗ ∈ [0.5, 1] for which min (s∗) = αs∗.

Since min (si) =
siα
1+α

on [0.5, 1], it follows that min (αs∗) < min (s∗) and that assumption
(A7) also holds.

5 Concluding Remarks

We have shown that whether or not the auction format matters in large societies is related to
whether or not the allocation of objects is concentrated or dispersed. In addition, for certain
cases we are able to provide tight bounds on the revenues raised in concentrated allocations,
and discuss at length how allocations and revenue may differ under dispersed allocations.
While this work points out the importance of the distinction between concentrated and
dispersed allocations, it also points to important questions for future research, of which we
now mention some obvious ones.

5.1 Comparison of Revenues in the Two Auctions

Although we have allowed for asymmetric mechanisms, we have worked under an assumption
of some symmetry in information and preferences across bidders. While it is clear that
removing this assumption will not impact the basic properties of concentrated and dispersed
allocations, the symmetric setting was critical to results such as Theorem 5, which shows
that with flat demands the uniform price auction leads to higher revenue per unit than
discriminatory auctions by an amount that is bounded below. As is evident from an example
of Maskin and Riley (2000), with asymmetries among bidders these revenue ranking can be
reversed. As this question is an important one for a number of applications,37 it will be
important to untangle how asymmetries affect the relative performance of various auction
formats under dispersed allocations.38

Also, let us also mention that the revenue ranking between the auctions depends in
some other ways on the setting considered. For instance, it is natural to conjecture that

37For example, this has been an important issue for treasury auctions for many years. See Bikhchandani
and Huang (1993) for an overview of some of the debate over use of uniform versus discriminatory auctions;
and Binmore and Swiezbinski (2000) and Hortascu (2000) for some recent empirical investigations.

38Recent work by Pekec and Tsetlin (2002) shows that uncertain participation by bidders can be another
important factor in ranking auctions. We have not faced this issue, as we have been working with large
numbers. But clearly, understanding when large numbers of agents will participate is an issue of importance.

26



the asymptotic revenue for the discriminatory auction would be no higher than that of the
uniform price auction in symmetric settings. The reason that this seems natural is that
the uniform price auction leads to an asymptotically efficient allocation and the competitive
price in the limit, while the discriminatory auction can lead to an inefficient allocation, and
one might guess, that it then leads to a correspondingly lower price. This would dovetail
nicely with the analysis of Section 4. The following example illustrates, however, that there
are some additional issues to think about.

Example 4 Higher Revenue from Discriminatory Auctions.

Reconsider Example 1 with some modifications.
The information structure is the same: Each agent observes Si uniform on [0, X], where

X is uniformly distributed on [0,1]. However, agents value two objects. The value for the
first object is K + si and the value for the second is si, where K is to be defined below.
There are 3n/2 objects for sale. So, when K ≥ 1, the efficient allocation is that each bidder
gets at least one object, and the n/2 bidders having the highest si’s each get two objects.

The asymptotic expected revenue per object in the Vickrey auction is easy: it converges
to X/2 and in expectation is .25.

In the discriminatory auction, for large enough K, the following is the limit of a sequence
of equilibria: bidders’ first bid is always 1/3; and the bidders’ second bid is as described in
Example 1.

This sequence of equilibria is asymptotically efficient39 and also gives higher revenue in
the limit than the Vickrey (or the uniform) auction. The revenue is as follows: in the limit
2/3 of the objects are sold at a price of 1/3 and 1/3 of them are sold at a price of .215; so
this is an average price of .294. The average price in the Vickrey auction is .25.

Without providing full detail, let us sketch why this is the limit of a sequence of equilibria.
If all the first bids are above the support of the low bids, then the second bids are still the
limit of a sequence of equilibria since the n bidders end up bidding for the remaining n/2
items, exactly as in Example 1. So the argument is that for some large enough K and n, all
bidders place their first bid at the top of the support of the lower bids. This simply requires
that when looking conditional on any si, there is some minimum (bounded away from zero)
of the conditional density of the cutoff bid falling near the top of the support (which must
happen in an equilibrium). This means that even if a bidders sees a low si, that bidder still
places some chance on high X’s. Then for large K, lowering a bid by some ε below the top
of the support of the expected cutoff will lower the payment by ε when winning, but loses a
value of at least K with probability ε times the marginal probability lost which is bounded
below.

This example shows, when combined with Theorem 5, that one cannot generally rank
the auctions in terms of the asymptotic revenue they generate. Here, the downward sloping
demands introduce large enough additional asymmetries between first and second object
valuations to result in some interesting behavior and reversal in revenue ranking from what
we saw before.

39The example can easily be modified to be inefficient, and so the ranking of revenues has no general
relationship with asymptotic efficiency.
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This example also provides a comment on Theorem 7 regarding the inefficiency of the
discriminatory auctions. Here K is large enough so that first objects are effectively not
competitive with second objects. It is almost as if there are two separate auctions going
on, and this results in efficient allocations. This is a rather special case, but points out the
importance of an assumption behind Theorem 7 - that some signals tell a bidder that he will
not be getting any objects. That fails in the above example, where even bidders seeing the
lowest signals are sure that they should get at least one object.

5.2 Revenue versus Efficiency

It is often natural to think about standard auctions where bidders can enter any number of
bids and objects are allocated to the highest bids. We now point out, however, that even
when this results in an efficient allocation, there may be other auction designs that lead to
higher revenues, and hence there can be a very fundamental tension between efficiency and
revenue maximization.

In auction design, there are several tensions between efficiency and revenue that have been
noted in the literature. First, the commitment to a reservation fee can raise expected revenues
while decreasing efficiency (e.g., see Myerson (1981)), as sometimes an object is not sold when
it would be efficient to do so. Second, with asymmetric distributions of information, awarding
the object to the bidder with the highest virtual utility (which maximizes revenue) may
conflict with awarding the object to the bidder with the highest utility (which is efficient),
as shown by Myerson (1981). Third, with heterogeneous objects, a seller may have an
incentive to bundle objects together (Palfrey (1983), Jehiel and Moldavanu (2001)).

The example below points out that such an incentive to inefficiently allocate objects
(in particular to bundle them) arises in situations where dispersed allocations are efficient,
even in a case with homogeneous objects and independent symmetric type distributions. In
particular we show that any mechanism which results in an allocation which is approximately
efficient is dominated in terms of revenue by one that bundles goods and sells them in an
inefficient manner. The intuition for this follows closely from the optimal nonlinear pricing
literature (e.g., see Wilson (1990)) where there is often a tension between a monopolist’s
profit maximization and efficiency. This shows that even Vickrey mechanisms, or any other
approximately efficient variation, lead to lower revenue than from bundling the goods and
auctioning them in pairs. The benefits of inefficient bundling of goods is different from the
benefits of inefficiency arising from use of a reservation price.

The following example is one where dispersed allocations are efficient, and any mecha-
nism leading to an (approximately) efficient allocation provides less revenue than one which
allocates the goods in a dispersed, but inefficiently bundled manner.40

Example 5 Bundling

Si is distributed uniformly on [0, 1]. There are n
2
indivisible objects to be allocated.

Bidders have a value of si for a first object, a value of si

2
for a second object, and no value

for any additional objects.

40As shown by Ausubel and Cramton (1999), a perfect resale market for goods leads to a revenue maxi-
mizing mechanism being an efficient one. So, it is important that perfect (costless) resale is not possible in
this example.
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First, consider any (approximately) efficient allocation, which for large numbers corre-
sponds (approximately) to giving one object to each of the n

2
highest signal observers. Given

the independent signals, revenue equivalence among individually rational mechanisms holds
in this world (see Ausubel and Cramton (1995)), and so the expected revenue of any mech-
anism that results in this allocation converges to 1

2
per object.

Next, consider the following inefficient allocation. Objects are bundled and only sold in
pairs. The pairs of objects are awarded to the n

4
highest signal holders via a Vickrey auction.

In this case, the price setting bidder for large n will have a signal of approximately 3
4
. That

bidder’s valuation for a pair of objects will be 3
4
+

(
1
2

)
3
4
= 9

8
, and the revenue per object

converges to 9
16
.

Although bundling leads to an inefficient allocation, it lead to an increase in revenue of
over 6% compared to mechanisms leading to the efficient allocation.

In the case of dispersed allocations we know that the mechanism matters. We have
made some progress here in comparing uniform and discriminatory auctions under different
scenarios. However, as the last example (Example 5) shows, sellers might prefer auctions
which bundle or allocate objects in ways beyond these two standard auctions. Moreover, this
is not due to some externalities across objects, so that a combinatorial auction is of value.
This is more directly tied to incentive compatibility.

Obtaining a better understanding of optimal mechanisms in such situations, as well as
the tension between efficiency and revenue maximization, is a challenging but important
open problem.
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6 Appendix

Proof of Lemma 1: Write

In + IIn ≥ |Surni (si, s′i)− Surni (s
′
i, s

′
i)|

where In is the difference in the utility from the good received:

In =
∣∣∣∣
∫
qni (s

′
i, s−i) v (si, x) dF

n (s−i, x|si)−
∫
qni (s

′
i, s−i) v (s

′
i, x) dF

n (s−i, x|s′i)
∣∣∣∣

and IIn is the difference in expected payment

IIn =
∣∣∣∣
∫
tni (s

′
i, s−i) dF

n (s−i|si)−
∫
tni (s

′
i, s−i) dF

n (s−i|s′i)
∣∣∣∣ .

Step 1: In < (α+ γ) |si − s′i|E [qni (S) | Si = s′i]

(A2) ( dv
dsi

< γ) implies that for any n

∣∣∣∣
∫
qni (s

′
i, s−i) [v (si, x)− v (s′i, x)] dF

n (s−i, x|s′i)
∣∣∣∣ ≤ γ|si − s′i|E [qni (S) | Si = s′i] . (2)

(A1) implies that:

|dF n(s−i|si)− dF n(s−i|s′i)| =
∣∣∣∣
∫
x
fn(s−i|x)(f(x|si)− f(x|s′i))dx

∣∣∣∣ ≤ α|si − s′i|dF n(s−i|s′i).

Then since 1 ≥ |v (s, x)|, we deduce that:
∣∣∣∣
∫
qni (s

′
i, s−i) v (si, x) dF (s−i, x|si)−

∫
qni (s

′
i, s−i) v (si, x) dF

n (s−i, x|s′i)
∣∣∣∣ (3)

≤ α|si − s′i|En [qni (S) | Si = s′i] .

Hence, the claim in Step 1 follows from (2) and (3).

Step 2: IIn ≤ α|si − s′i|En [qni (S) | Si = s′i]

Again using (A1), it follows that:

∣∣∣∣
∫
tni (s

′
i, s−i) dF

n (s−i|si)−
∫
tni (s

′
i, s−i) dF

n (s−i|s′i)
∣∣∣∣ ≤ α|si − s′i|En [tni (S)|Si = s′i] ,

and so IIn < α|si − s′i|En [tni (S)|Si = s′i]. From the interim individual rationality constraint
and the fact that 1 ≥ v(si, x), it follows that:

En [qni (S)|Si = s′i] ≥ En [tni (S)|Si = s′i] .

which concludes the argument.
Proof of Theorem 1: We actually prove that

E (
∑

i Sur
n
i (Si, Si))

Qn
=

∑
i

∫
[0,1]

Surni (s, s)

Qn

dF (s),

33



converges to 0, which implies convergence in probability since Surni (Si, Si) is a nonnegative
random variable.
Fix any small ε and by Lemma 1 find a δ such that |s− s∗| < δ implies that for all i and n

|Surni (s∗, s)− Surni (s, s)| ≤ εEn [qni (S) |Si = s] .

For the given ε and any i, let An
i (ε) denote the set of types who expect to receive supply

less than εq̄n, that is:

An
i (ε) = {si s.t. E

[
qni (S)

q̄n
|Si = si

]
< ε}.

Pick n > n′ (where n′ is defined by concentration) so that for any s that is in the support of
f , there exists sni (s) ∈ An

i (ε) such that |s−sni (s)| < δ.41 Incentive compatibility and Lemma
1 then imply that:

Surni (s, s) ≤ Surni (s
n
i (s), s

n
i (s)) + εEn [qni (S)|Si = s] . (4)

By the definition of An
i (ε) and qn, we can bound the surplus of types sni (s) ∈ An

i (ε) :

∑
i

Surni (s
n
i (s), s

n
i (s))

Qn

≤ ∑
i

E

[
qni (S)

Qn

|Si = sni (s)

]
< ε. (5)

Thus, from (4) and (5) it follows that for large enough n

∑
i

∫
[0,1]

Surni (s, s)

Qn

dF (s) ≤ ε+
∑
i

∫
[0,1]

ε
En [qni (S)|Si = s]

Qn

dF (s). (6)

Since
Qn ≥ ∑

i

∫
[0,1]

En [qni (S)|Si = s] dF (s),

it follows that

1 ≥ ∑
i

∫
[0,1]

En [qni (S)|Si = s]

Qn

dF (s). (7)

(6) and (7) then imply that for large enough n

∑
i

∫
[0,1]

Surni (s, s)

Qn

dF (s) ≤ 2ε.

The following lemma is useful in the proof of Theorem 2.

Lemma 3 Let sn = 1− na−1. If (A3) is satisfied, then there exists some b > 0 and some N
such that FY n

−i(1)|Si
(sn|sin) < e−bna

for all n > N .

41Note the following simple claim. Consider any density f on [0,1]. For any δ > 0, there exists γ < 1 such
that for every s in the support of f and every set A ⊂ [0, 1] with measure at least γ under f , the distance of
s to A is less than δ. (To see this, simply subdivide the interval into into δ/2 sized pieces, and set γ to be
one minus the smallest positive probability given to a subinterval under f .)
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Proof of Lemma 3: The claim is clear if a ≥ 1, so consider a < 1. Write

FY n
−i(1)|Si

(sn|sin) =
∫
x
FY n

−i(1)|X(s
n|x)f(x|sni )dx.

By (A3) it follows that for any x

FY n
−i(1)|X(s

n|x) < (1− na−1

β
)n−1.

Thus,

FY n
−i(1)|Si

(sn|sin) < (1− na−1

β
)n−1.

Since (1− na−1

β
)n−1 → e−

na

β , the claim follows.

Proof of Theorem 2: First, we show that for any a > 0, there exists N ′ such that for all
si and all n > N ′

Surn (si, si) < 2αna−1Qn, (8)

where α is identified in (A1).
Let sn = 1 − na−1, and identify b and N from Lemma 3, such that FY n

−i(1)|Si
(sn|sin) < e−bna

for all n > N .
If si < sn for some n > N , then it follows that Surn (si, si) < Qne−bn. Taking, N ′′ to
be large enough so that e−bna

< αna−1, we know that (8) holds for any si < sn when
n > N ′ = max{N,N ′′}.
Next, consider any si ≥ sn for some n > N ′. By Lemma 1

|Surn (sn, si)− Surn (si, si)| < αna−1Qn.

Since e−bnQn ≥ Surn (sn, sn) ≥ Surn (sn, si), this implies that

Surn (si, si) < e−bnQn + αna−1Qn.

Since n > N ′ we know that e−bna
< αna−1 (recall the definitions of N ′′ and N ′), and so (8)

holds for any si ≥ sn. Thus, we have established (8).

So, let us now argue that for any a > 0,
n1−a

∑
i
Surn

i (Si,Si)

Qn converges to 0 in probability.

Since Qn goes to just one bidder,42

∫
Surn(si, si)dFY n(1)(si) ≥ E

[∑
i

Surn(Si, Si)

]
.

So, from (8) it follows that for any a > 0 there exists N such that for any n > N

E

[∑
i

Surn(Si, Si)

]
< 2αna−1Qn. (9)

42This inequality needs not hold with equality, since it may be that payments are made by losing bidders.
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Let us verify that this implies the theorem. First, we show that
n1−aE[

∑
i
Surn

i (Si,Si)]
Qn converges

to 0. Suppose the contrary. Then there exists a′ > 0 and δ > 0 such that

E

[∑
i

Surn(Si, Si)

]
> δna′−1Qn

for infinitely many n. Taking a < a′, this violates (9) for some large enough n. Thus, our

supposition was incorrect and so
n1−aE[

∑
i
Surn

i (Si,Si)]
Qn converges to 0. Since Surni (Si, Si) ≥ 0,

it follows that for any a > 0,
n1−a

∑
i
Surn

i (Si,Si)

Qn converges to 0 in probability.

Proof of Theorem 3
We bound nSurn(si, s

′
i)/Q

n from below (across n) for a bidder observing some si > 1− a
n
and

reporting s′i = 1 − 2a
n
, for some a > 0. By incentive compatibility, this gives a lower bound

on nSurn(si, si)/Q
n. We then show that there is a probability bounded from below that a

winning bidder observes such a signal, which then implies that nE [
∑

i Sur
n(Si, S

′
i)] /Q

n is
bounded below.
So, let us show that nSurn(si, s

′
i)/Q

n is bounded below for a bidder observing some si > 1− a
n

and reporting s′i = 1− 2a
n
, for some a > 0.

Sur(si, s
′
i) =

∫
qni (s

′
i, s−i) v (si, x)− tni (s

′
i, s−i) dF

n (x, s−i|si) = In + IIn

where,

In =
∫
qni (s

′
i, s−i) [v (si, x)− v (s′i, x)] dF

n (s−i, x|si)
and

IIn =
∫
[qni (s

′
i, s−i) v (s

′
i, x)− ti (s

′
i, s−i)] dF

n (x|si)
We first examine In. Since the good has a private value component, v (si, x)− v (s′i, x) >

τa
2n
.

This implies that:

In > Qn
τa

2n
FY n

−i(1)|Si
(s′i | si) . (10)

Given the state X = x signals are independent, hence:

FY n
−i(1)|Si,X (s′i | si, x) = FY n

−i(1)|X (s′i | x) = FSi|X (s′i | x)n−1

Using assumption (A3), we conclude that FSi|X (s′i|x) > 1− 2aβ
n

for all x which implies that
that there exists some α∗ > 0 so that43

FY n
−i(1)|X (s′i | x) > α∗

Thus, since FY n
−i(1)|Si

(s′i | si) =
∫
x FY n

−i(1)|X (s′i | x) df(x|si), it follows from (10) that In/Qn

n
is

bounded below.

43The expression (1 − 2aβ
n )n−1 converges to e−2aβ .
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So, if IIn ≥ 0, then the claim that nSurn(si, s
′
i)/Q

n is bounded below follows. So, we need
only consider the case where IIn < 0. We establish the claim by showing that in this case
there exists some τ ′ > 0 so that IIn > − τ ′

n2 . From assumption (A1), we know that:

(
1− 2αa

n

)
f (x, s−i | s′) < f (x, s−i|s) <

(
1 +

2αa

n

)
f (x, s−i|s′i)

Hence we conclude that:

IIn > Surn (s′i, s
′
i)−

2αa

n

∫
|qni (s′i, s−i) v (s

′, x)− tni (s
′
i, s−i)| f (x, s−i|s′i) d(x, s−i)

Individual rationality implies that Surn (s′i, s
′
i) > 0, and so

IIn > −2αa

n

∫
|qni (s′i, s−i) v (s

′, x)− tni (s
′
i, s−i)| fn (x, s−i|s′i) d(x, s−i) (11)

We also know that:∫
|qni (s′i, s−i) v (s

′
i, x)− tni (s

′
i, s−i)| fn (x, s−i|s′i) d(x, s−i)

= Surn (s′i, s
′
i) + 2

∫
{qni (s′i, s−i) v (s

′
i, x)− tni (s

′
i, s−i)]}− fn (x, s−i|s′i) d(x, s−i)

where Z− equals −Z when Z is negative and zero otherwise. Given that we are in the case
where IIn < 0, and the fact that |qni (s′i, s−i) v (s

′
i, x)− tni (s

′
i, s−i)| < Qn we conclude that

Surn (s′i, s
′
i) <

2α
n
. Since s′i = 1 − 2a

n
and payment per unit is bounded by 1, we conclude

that: ∫
{qni (s′i, s−i) s

′ − tni (s
′
i, s−i)}− fn (x, s−i|s′i) d(x, s−i) <

2a

n
Qn

Hence the claim follows from (11).

To complete the proof, we need to show that the probability that the winning signal is larger
than 1 − a

n
is bounded below. Again, (A3) implies that FSi|X

(
1− a

n
|x

)
< 1 − a

βn
for all x

and si > 1 − a
n
. Thus, FY n(1)|X

(
1− a

n
|x

)
< (1 − a

βn
)n, which converges to e−a/β. So, there

is a probability bounded below that the winning signal exceeds 1− a
n
.

Proof of Theorem 4: We need only prove the theorem for symmetric mechanisms. The
extension to asymmetric mechanisms is then seen rather simply.44 Suppose to the contrary
that some sequence of dispersed asymmetric mechanisms leads to an expected surplus head-
ing to zero. Construct a sequence of symmetric mechanisms by randomly labeling the agents
in the n-th mechanism. This must lead to the same expected total surplus, and is still in-
centive compatible, safe, and dispersed. But this would contradict the fact that the result
holds for symmetric mechanisms.
By dispersion, there exists ε > 0, a > 0, and for each n (taking a subsequence if necessary)
a signal sn < 1− 3ε such that

E(qni (s
n, S−i)|Si = sn) >

a

n
Qn.

44We thank an anonymous referee for pointing this out.
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Since, by (A1)
∣∣∣f(x|si)
f(x|s′i)

− 1
∣∣∣ < α|si−sn|, it follows that

∣∣∣ f(s−i|si)
f(s−i|sn)

− 1
∣∣∣ < α|si−sn|. Thus, there

exists ε such that for any si ∈ [sn + ε, sn + 2ε]

E(qni (s
n, s−i)|Si = si) >

a

2n
Qn.

In a safe mechanism,

E[qni (s
n, s−i)v (s

n, x)− tni (s
n, s−i)|si] ≥ 0, (12)

for any si ∈ [sn + ε, sn + 2ε]. Since the good has a private value component, and by (A2)
preferences are non-decreasing in signal, we know that there exists τ > 0 such that v (si, x)−
v (sni , x) > τε. Thus,

E[qni (s
n, s−i) {v (si, x)− v (sn, x)} |si] ≥ τε

a

2n
Qn (13)

Since
Surn(si, s

n) = E[qni (s
n, s−i)v (si, x)− tni (s

n, s−i)|si],
(12) and (13) imply that for any si ∈ [sn + ε, sn + 2ε]

Surn(si, s
n) ≥ τε

a

2n
Qn.

By incentive compatibility,

Surn(si, si) ≥ τε
a

2n
Qn

This shows that conditional on getting a signal in [sni + ε, sni + 2ε] any agent expects a
surplus that is bounded away from zero (relative to the per-capita supply of objects Qn

n
).

The positive density of f(si) implies that there is a minimum positive probability that signals
fall in [sn + ε, sn + 2ε] regardless of the choice of sn, and hence the claim follows.

Proof of Theorem 5: Let s∗ (x) be the solution to F (si | x) = 1− b, where Qn

n
→ b. Note

that under (A4), s∗(x) is increasing and continuous in x.

Let t
n,d

(si) , t
n,u

(si) be the expected payment of a bidder conditional on observing signal
Si = si, in the discriminatory and the uniform price mechanisms respectively. The expected
revenues in the respective mechanisms are

n
∫
t
n,l
(si) dF (si) for l = u, d. (14)

Given (A2) and (A4), an argument similar to that underlying Theorem 15 in Milgrom and
Weber (1982) implies that

t
n,u

(si) ≥ t
n,d

(si) for every n and si.

This implies that the expected revenue in the uniform price mechanism is no lower than in
the discriminatory one. However, it does not guarantee that there exists a positive difference
that is bounded below as we increase the number of bidders. To show that such gap exists,
we argue that there is an interval in which t

n,d
(si) becomes flat as n increases and that on
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the same interval, t
n,u

(si) is increasing. Specifically, we show this for the interval [s∗, 1] ,
where s∗ is the max of the support of the random variable s∗(X). Thus, [s∗, 1] is the interval
in which 1− b ≥ F (si|x) for almost every x.

Let us first show that t
n,d

(si) becomes flat as n increases on the interval [s∗, 1]. Note that
s∗ < 1 since the distribution of Si conditional on X = 1 is described by a density function
and b < 1 and so 1 > s∗(1) ≥ s∗. Also, since f(si) > 0 for all si, there is a positive
(unconditional) probability that Si ∈ [s∗, 1]. For any si ∈ (s∗, 1], there is a large enough
n so that a bidder observing Si = si has an arbitrarily high (prespecified) probability of
observing one of the highest Qn signals. This implies that an agent who has a signal si > s∗

can pretend to have a lower signal with a minimal effect on the probability of getting an
object, for some large enough n. Hence, we conclude that for any si > s′i > s∗

t
n,d

(si)− t
n,d

(s′i) → 0. (15)

This implies that while t
n,d

(si) is increasing in si,
45 it converges to being flat over the interval

(s∗, 1] as n increases.

Before we show that the sequence t
n,u

converges pointwise on (s∗, 1] to a function t∗ that is
increasing over (s∗, 1], let us check that this together with the fact that t

n,d
(si) converges to

a constant function on the interval [s∗, 1] imply the theorem.
To do this, we first show that for any si ∈ (s∗, 1] there exists an N such that for all n > N

∫ 1

s∗
t
n,d
(si)dF (si) < t∗(si) (1− F (s∗)) . (16)

Pick some s′i ∈ (s∗, si] and find N such that

|tn,u(s′i)− t∗(s′i)| < (t∗(si)− t∗(s′i))/3

for all n > N . Find N ′ such that for any n > N ′

|tn,d (1)− t
n,d

(s′i) | < (t∗(si)− t∗(s′i))/3.

It then follows that since t
n,u
(s′i) ≥ t

n,d
(s′i) that if n > max[N,N ′] then for any si ∈ [s′i, 1]

t
n,d

(si) < t∗ (si)− (t∗(si)− t∗(s′i))/3.

(16) then follows since t
n,d

is increasing.
Next, note that since t∗ is increasing we can find ε > 0 and si ∈ (s∗, 1] so that

t∗(si)(1− F (s∗)) < ε+
∫ 1

s∗
t∗(si)dF (si).

Thus, by (16) it follows that there exists ε > 0 and N such that for all n > N

∫ 1

s∗
t
n,d
(si)dF (si) < ε+

∫ 1

s∗
t∗(si)dF (si). (17)

45This follows from incentive compatibility, (A2), and the strict MLRP-(A4).
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By the Dominated Convergence Theorem

∫ 1

s∗
t
n,u
(si)dF (si) →

∫ 1

s∗
t∗(si)dF (si).

This coupled with (17) implies the theorem.

We now complete the proof of the theorem by showing that t
n,u

converges pointwise on
(s∗, 1] to a function t∗ that is increasing over (s∗, 1]. This is established through the following
lemmas.

Lemma 4 If si > s∗, then

t
n,u

(si) → t∗ (si) = E (v (s∗ (X) , X) |Si = si) .

Lemma 5 t
∗
(si) is increasing on (s∗, 1].

Proof of Lemma 4:
Step 1: For any si in the support of s∗ (X),

bn (si) → b∗ (si) = v (si, x
∗ (si)) ,

where bn is the equilibrium bidding function and x∗(si) is the inverse of s∗(x).46

For any si in the support of s∗ (X), X conditioned on Si = si and Y n
−i (Q

n) = si converges
in probability to x∗(si). Thus, since (see Milgrom (1981))

bn (si) = E
[
v(si, X)|Si = si, Y

n
−i (Q

n) = si
]
, (18)

the claim follows from the convergence in probability and the continuity and boundedness
of v in x.
Step 2: For almost any x

E
(
bn

(
Y n
−i (Q

n)
)
|X = x

)
→ v (s∗ (x) , x) .

For any x, Y n
−i (Q

n) conditioned onX = x converges in probability to s∗(x). By the continuity
of f (x) , almost every x is in the interior of the support of X. Thus, given strict MLRP and
the continuity of F (si|x) in x, it follows that for almost every x, s∗(x) is in the interior of the
support of s∗(X). So, from Step 1 it follows that for almost every x there is a neighborhood
B of s∗(x) such that bn (si) → b∗ (si) for all si ∈ B. Given that Y n

−i (Q
n) conditioned

on X = x converges in probability to s∗(x), the probability of Y n
−i (Q

n) conditioned on
X = x has probability approaching 1 placed on B. Then from the dominated convergence
theorem, E

(
bn

(
Y n
−i (Q

n)
)
|X = x

)
→ E

(
b∗

(
Y n
−i (Q

n)
)
|X = x

)
, and given the fact that

b∗(si) = v(si, x
∗(si)) is bounded and continuous, the claim follows since Y n

−i (Q
n) conditioned

on X = x converges in probability to s∗(x).
Step 3 For si > s∗, tn,u (si) → t∗ (si).
We know that

t
n,u
(si) = E

[
Isi≥Y n

−i(Q
n)b

n
(
Y n
−i (Q

n)
)
|Si = si

]
.

46By the strict MLRP, s∗ is increasing in x and so x∗ is well-defined on the support of s∗(X).
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For si > s∗, Isi≥Y n
−i(Q

n) goes to 1, and so

t
n,u
(si) → E

[
bn

(
Y n
−i (Q

n)
)
|Si = si

]
.

Then, given the conditional independence of signals conditional on X, we can write

t
n,u
(si) → E

[
E

(
bn

(
Y n
−i (Q

n)
)
|X

)
|Si = si

]
.

So, from Step 2,
t
n,u
(si) → E [v (s∗ (X) , X) |Si = si] ,

which is the desired conclusion.

Proof of Lemma 5:
By (A2) and since s∗ (x) is continuous and increasing, it follows that v (s∗ (x) , x) is continuous
and increasing. Assumption (A4) implies that the distribution of X conditional on Si = si
is stochastically dominated by the distribution of X conditional on Si = s′i, where s′i > si.
The result then follows from the stochastic dominance.

This concludes the proof of Theorem 5.

Proof of Lemma 2: We first measure the influence a bidder has on prices by looking at
the event in which he is able to push the price above some threshold y ∈ [0, 1], given that
the price would be below y in the absence of the bidder’s bids. Let Y−i (l) denote the l-th
highest bid excluding i’s bids. Using this notation for bidder i to be able to push the price
above y it must be that Y−i (Q

n −m) > y and Y−i (Q
n) < y. Laws of large numbers imply

that this happens with low probability. Specifically, the argument used in Lemma 9.2 in
Swinkels (2001) shows that for any ε > 0 there exists some Nε so that n > Nε implies that
for any state X and bidder i:

Pr (Y−i (Q
n −m) > y and Y−i (Q

n) < y|X) < ε

A sketch of the argument is as follows. There are (n− 1)m bids of bidders besides i. One can

define random variables {Zj}(n−1)
j=1 that give the number of bids above y that are submitted

by bidder j. The probability that i pushes the price above y when starting below is then
bounded by pr

(∑(n−1)
j=1 Zj ∈ [Qn −m,Qn]

)
. Conditional on X bids are independent and

hence so are the {Zj} . This implies that this probability is negligible for large n since m is
finite.
The above inequality implies that if we fix a positive integer J , then for any j ∈ {1, . . . , J}
there exists Nj such that for n > Nj

Pr
(
Y−i (Qn −m) >

j

J
and Y−i (Qn) <

j

J
|X

)
<

1

J2
.

Letting N∗ = maxj Nj, it follows that for all n > N∗

Pr
(
∃j : Y−i (Qn −m) >

j

J
and Y−i (Qn) <

j

J
|X

)
<

J

J2
=

1

J

Let p1 denote the price if bidder i submits the maximal possible bid on all of his units and
let p0 denote the price if i bids zero on all of his units. The above inequality implies that for
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any J there exists NJ such that Pr
(
p1 − p0 >

2
J

)
< 1

J
for n > NJ . To conclude the Lemma

let J = 2/ε.

Proof of Theorem 6: First, let us show that the price converges to the competitive price.
That is, for any δ > 0, for all high enough n, Pr (|pnc − pn| > δ) < δ.
Suppose that this is not the case, so that there exists δ > 0 such that for all n (taking a
subsequence if necessary), Pr (pnc − pn > δ) > δ. [The case where pn exceeds pnc is analogous.]
Since both prices and values are bounded in [0, 1] there exists some δ∗ > 0 and some interval
[a, a+ δ∗] such that for all n47

Pr (pn < a and pnc > a+ δ∗) > δ∗.

Hence, for large enough n there is a probability bounded away from 0 that some bidder who
values a unit by more than a + δ∗

2
does not obtain that object and the price is less than a.

Consider a deviation for such bidders to bid truthfully instead. This increases the expected
number of units such a bidder gets, but may affect the clearing price. However, by Lemma
2 the price implications for such a deviation become negligible for large n. This yields a
contradiction as it guarantees an extra unit at a profit bounded away from zero for such a
bidder for large enough n, with negligible price impact.
Next, note that a similar argument to that above (again invoking Lemma 2) implies that
although bidders may place some bids above or below their corresponding values in equilib-
rium, this can only be in cases where for large enough n, changing those bids to be equal
to the corresponding values would have a negligible probability of affecting the equilibrium
allocation.
The approximate efficiency follows from the convergence of price to the competitive one, and
bidders bidding as if they bid their values.

Proof of Theorem 7: The following lemma is useful.
Consider an n bidder discriminatory auction. Let pn denote the minimal price paid in
equilibrium, i.e., the Qn − th highest bid, and let bnj (si) denote the bid in the n-th auction
for a j-th object by a bidder observing si. Also, for any 1 ≤ j ≤ m and δ > 0 let

An
jδ =

{
si|Pr

(
vj (si) > Mn + δ and pn > bnj (si)

)
> δ

}

Bn
jδ =

{
si|Pr

(
vj (si) < Mn − δ and pn < bnj (si)

)
> δ

}
.

Lemma 6 If for some j and δ it is true that for any N there exists n > N such that either

Pr
(
An

jδ

)
> δ or Pr

(
Bn

jδ

)
> δ, then the discriminatory price auction is not asymptotically

efficient.

Proof: Suppose that Pr
(
An

jδ

)
> δ for arbitrary large n; the case where Pr

(
Bn

jδ

)
> δ is

similar. Any signal that belongs to this set results in an efficiency loss of at least δ2. The fact

47Partition [0, 1] into 2/δ intervals of size δ/2 each, {[ai, ai+1]}1/2δ
i=1 . The case in which pn < pn

c − δ implies
that we can find some ai so that pn < ai and pn

c > ai+1. This implies that there exists some interval for
which Pr (pn < ai and pn

c > ai+1) > δ2/2. Hence, we let δ∗ = δ2/2.
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that Pr
(
An

jδ

)
> δ implies (appealing to the law of large numbers) that there is an ex-ante

efficiency loss that is bounded away from zero when summing across bidders.

Assume by contradiction that the outcome is asymptotically efficient.
First, let us argue that there exists δ1 such that bn1 (si) < vm (s∗) − δ1 for all signals
si ∈ [vm (s∗) , vm (s∗) + δ1] for large enough n. Using the continuity of min (s) and as-
sumptions (A6)-(A7) we conclude that there exists an ε such that agents with a signal
si ∈ [vm (s∗) , vm (s∗)+ ε] can expect to win their first unit with a probability of at least ε by
bidding vm (s∗)−ε for large enough n. This follows as prices never exceedMn. In equilibrium,
these bidders make an expected profit on their first unit of at least ε2 and hence they must
be bidding below their value by at least ε2. If we let δ1 = ε2 we get that bn1 (si) < vm (s∗)− δ1

for all signals si ∈ [vm (s∗) , vm (s∗) + δ1].
Next, note that there exists some δ2 > 0 so that si ∈ [s∗, s∗ + δ2] implies that bnm (si) >
vm (s∗) − δ1. This follows since bidders with signals close to (but above) s∗ have a low
but positive probability of winning their m − th object in an efficient allocation, but that
probability goes to zero in n if they underbid by any fixed amount. As a result they bid
close to their reservation value on their m-th object for large n. Hence, there exists some
δ2 > 0 so that si ∈ [s∗, s∗ + δ2] implies that b

n
m (si) > vm (s∗)− δ1.

If we let δ∗ = min (δ1, δ2) we conclude that agents with signal si ∈ [vm (s∗) , vm (s∗) + δ1] bid
on their first unit no more than vm (s∗)− δ∗ while agents with signal si ∈ [s∗, s∗ + δ∗] bid on
their m− th unit at least this amount. Consider now the event that:

Mn ∈ (vm (s∗) + 2δ∗/5, vm (s∗) + 3δ∗/5)

Since we assume that the distribution of signals has a full support, this event occurs with
some positive probability δ∗∗.
Consider two cases:
(i) pn ≥ vm (s∗) − δ∗ : This event maps to A in Lemma 6. Bidders with types si ∈
[vm (s∗) + 4δ∗/5, vm (s∗) + δ∗] are not awarded their first object despite the fact that their
valuation exceeds the cutoff by more than δ∗/5 .
(ii) pn < vm (s∗) − δ∗ : This event maps to B in Lemma 6. Bidders with types si ∈
[vm (s∗) , vm (s∗) + δ∗/5] are awarded their m− th unit despite the fact that their valuation
is lower than the cutoff by more than δ∗/5 .
Since either (i) or (ii) occurs with probability of at least δ∗∗/2 for large enough n, Lemma 6
implies a contradiction.
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