8 research outputs found

    On rr-Guarding Thin Orthogonal Polygons

    Get PDF
    Guarding a polygon with few guards is an old and well-studied problem in computational geometry. Here we consider the following variant: We assume that the polygon is orthogonal and thin in some sense, and we consider a point pp to guard a point qq if and only if the minimum axis-aligned rectangle spanned by pp and qq is inside the polygon. A simple proof shows that this problem is NP-hard on orthogonal polygons with holes, even if the polygon is thin. If there are no holes, then a thin polygon becomes a tree polygon in the sense that the so-called dual graph of the polygon is a tree. It was known that finding the minimum set of rr-guards is polynomial for tree polygons, but the run-time was O~(n17)\tilde{O}(n^{17}). We show here that with a different approach the running time becomes linear, answering a question posed by Biedl et al. (SoCG 2011). Furthermore, the approach is much more general, allowing to specify subsets of points to guard and guards to use, and it generalizes to polygons with hh holes or thickness KK, becoming fixed-parameter tractable in h+Kh+K.Comment: 18 page

    Treelength of Series-parallel graphs

    Get PDF
    International audienceThe length of a tree-decompositionof a graph is the maximum distance between two vertices of a same bag of the decomposition. The treelength of a graph is the minimum length among its tree-decomposition. Treelength of graphs has been studied for its algorithmic applications in classical metric problems such as Traveling Salesman Problem or metric dimension of graphs and also, in compact routing in the context of distributed computing. Deciding whether the treelength of a general graph is at most 2 is NP-complete (graphs of treelength one are precisely the chordal graphs), and it is known that the treelength of agraph cannot be approximated up to a factor less than3/2 (the best known approximation algorithm for treelength has an approximation ratio of 3). However, nothing is known on the computational complexity of treelength in planar graphs, except that the treelength of any outerplanar graph is equal to the third of the maximum size of its isometric cycles. This work initiates the study of treelength in planar graphs by considering its next natural subclass, namely the one of series-parallel graphs. We first fully describe the treelength of melon graphs (set of pairwise internally disjointpaths linking two vertices), showing that, even in such a restricted graph class, the expression of the treelength is not trivial. Then, we show that treelength can be approximated up toa factor 3/2 in series-parallel graphs. Our main result is a polynomial-time algorithm for deciding whether a series-parallel graph has treelength at most 2. Our latter result relies on a characterization of series-parallel graphs with treelength 2 in terms of an infinite family of forbidden isometric subgraphs

    A Near-Optimal Planarization Algorithm

    Full text link

    Approximate Tree Decompositions of Planar Graphs in Linear Time

    No full text
    Many algorithms have been developed for NP-hard problems on graphs with small treewidth k. For example, all problems that are expressible in linear extended monadic second order can be solved in linear time on graphs of bounded treewidth. It turns out that the bottleneck of many algorithms for NP-hard problems is the computation of a tree decomposition of width O(k). In particular, by the bidimensional theory, there are many linear extended monadic second order problems that can be solved on n-vertex planar graphs with treewidth k in a time linear in n and subexponential in k if a tree decomposition of width O(k) can be found in such a time. We present the first algorithm that, on n-vertex planar graphs with treewidth k, finds a tree decomposition of width O(k) in such a time. In more detail, our algorithm has a running time of O(nk3 log k). The previous best algorithm with a running time subexponential in k was the algorithm of Gu and Tamaki [12] with a running time of O(n1+ɛ log n) and an approximation ratio 1.5 + 1/ɛ for any ɛ> 0. The running time of our algorithm is also better than the running time of O(f(k) · n log n) of Reed’s algorithm [18] for general graphs, where f is a function exponential in k. Key words: tree decomposition, treewidth, branchwidth, rank-width, planar graph, ℓ-outerplanar, linea
    corecore