19 research outputs found

    Approximate Maximin Shares for Groups of Agents

    Full text link
    We investigate the problem of fairly allocating indivisible goods among interested agents using the concept of maximin share. Procaccia and Wang showed that while an allocation that gives every agent at least her maximin share does not necessarily exist, one that gives every agent at least 2/32/3 of her share always does. In this paper, we consider the more general setting where we allocate the goods to groups of agents. The agents in each group share the same set of goods even though they may have conflicting preferences. For two groups, we characterize the cardinality of the groups for which a constant factor approximation of the maximin share is possible regardless of the number of goods. We also show settings where an approximation is possible or impossible when there are several groups.Comment: To appear in the 10th International Symposium on Algorithmic Game Theory (SAGT), 201

    How to Cut a Cake Fairly: A Generalization to Groups

    Full text link
    A fundamental result in cake cutting states that for any number of players with arbitrary preferences over a cake, there exists a division of the cake such that every player receives a single contiguous piece and no player is left envious. We generalize this result by showing that it is possible to partition the players into groups of any desired sizes and divide the cake among the groups, so that each group receives a single contiguous piece and no player finds the piece of another group better than that of the player's own group

    Computing an Approximately Optimal Agreeable Set of Items

    Full text link
    We study the problem of finding a small subset of items that is \emph{agreeable} to all agents, meaning that all agents value the subset at least as much as its complement. Previous work has shown worst-case bounds, over all instances with a given number of agents and items, on the number of items that may need to be included in such a subset. Our goal in this paper is to efficiently compute an agreeable subset whose size approximates the size of the smallest agreeable subset for a given instance. We consider three well-known models for representing the preferences of the agents: ordinal preferences on single items, the value oracle model, and additive utilities. In each of these models, we establish virtually tight bounds on the approximation ratio that can be obtained by algorithms running in polynomial time.Comment: A preliminary version appeared in Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), 201

    Cutting a Cake Fairly for Groups Revisited

    Full text link
    Cake cutting is a classic fair division problem, with the cake serving as a metaphor for a heterogeneous divisible resource. Recently, it was shown that for any number of players with arbitrary preferences over a cake, it is possible to partition the players into groups of any desired size and divide the cake among the groups so that each group receives a single contiguous piece and every player is envy-free. For two groups, we characterize the group sizes for which such an assignment can be computed by a finite algorithm, showing that the task is possible exactly when one of the groups is a singleton. We also establish an analogous existence result for chore division, and show that the result does not hold for a mixed cake

    Strategyproof Mechanisms For Group-Fair Facility Location Problems

    Full text link
    We study the facility location problems where agents are located on a real line and divided into groups based on criteria such as ethnicity or age. Our aim is to design mechanisms to locate a facility to approximately minimize the costs of groups of agents to the facility fairly while eliciting the agents' locations truthfully. We first explore various well-motivated group fairness cost objectives for the problems and show that many natural objectives have an unbounded approximation ratio. We then consider minimizing the maximum total group cost and minimizing the average group cost objectives. For these objectives, we show that existing classical mechanisms (e.g., median) and new group-based mechanisms provide bounded approximation ratios, where the group-based mechanisms can achieve better ratios. We also provide lower bounds for both objectives. To measure fairness between groups and within each group, we study a new notion of intergroup and intragroup fairness (IIF) . We consider two IIF objectives and provide mechanisms with tight approximation ratios

    Maximin Fairness with Mixed Divisible and Indivisible Goods

    Full text link
    We study fair resource allocation when the resources contain a mixture of divisible and indivisible goods, focusing on the well-studied fairness notion of maximin share fairness (MMS). With only indivisible goods, a full MMS allocation may not exist, but a constant multiplicative approximate allocation always does. We analyze how the MMS approximation guarantee would be affected when the resources to be allocated also contain divisible goods. In particular, we show that the worst-case MMS approximation guarantee with mixed goods is no worse than that with only indivisible goods. However, there exist problem instances to which adding some divisible resources would strictly decrease the MMS approximation ratio of the instance. On the algorithmic front, we propose a constructive algorithm that will always produce an α\alpha-MMS allocation for any number of agents, where α\alpha takes values between 1/21/2 and 11 and is a monotone increasing function determined by how agents value the divisible goods relative to their MMS values.Comment: Appears in the 35th AAAI Conference on Artificial Intelligence (AAAI), 202
    corecore