81,349 research outputs found

    Recursive tilings and space-filling curves with little fragmentation

    Full text link
    This paper defines the Arrwwid number of a recursive tiling (or space-filling curve) as the smallest number w such that any ball Q can be covered by w tiles (or curve sections) with total volume O(vol(Q)). Recursive tilings and space-filling curves with low Arrwwid numbers can be applied to optimise disk, memory or server access patterns when processing sets of points in d-dimensional space. This paper presents recursive tilings and space-filling curves with optimal Arrwwid numbers. For d >= 3, we see that regular cube tilings and space-filling curves cannot have optimal Arrwwid number, and we see how to construct alternatives with better Arrwwid numbers.Comment: Manuscript accompanying abstract in EuroCG 2010, including full proofs, 20 figures, references, discussion et

    A Study of Energy and Locality Effects using Space-filling Curves

    Full text link
    The cost of energy is becoming an increasingly important driver for the operating cost of HPC systems, adding yet another facet to the challenge of producing efficient code. In this paper, we investigate the energy implications of trading computation for locality using Hilbert and Morton space-filling curves with dense matrix-matrix multiplication. The advantage of these curves is that they exhibit an inherent tiling effect without requiring specific architecture tuning. By accessing the matrices in the order determined by the space-filling curves, we can trade computation for locality. The index computation overhead of the Morton curve is found to be balanced against its locality and energy efficiency, while the overhead of the Hilbert curve outweighs its improvements on our test system.Comment: Proceedings of the 2014 IEEE International Parallel & Distributed Processing Symposium Workshops (IPDPSW

    Neural Space-filling Curves

    Full text link
    We present Neural Space-filling Curves (SFCs), a data-driven approach to infer a context-based scan order for a set of images. Linear ordering of pixels forms the basis for many applications such as video scrambling, compression, and auto-regressive models that are used in generative modeling for images. Existing algorithms resort to a fixed scanning algorithm such as Raster scan or Hilbert scan. Instead, our work learns a spatially coherent linear ordering of pixels from the dataset of images using a graph-based neural network. The resulting Neural SFC is optimized for an objective suitable for the downstream task when the image is traversed along with the scan line order. We show the advantage of using Neural SFCs in downstream applications such as image compression. Code and additional results will be made available at https://hywang66.github.io/publication/neuralsfc

    Locality and Bounding-Box Quality of Two-Dimensional Space-Filling Curves

    Full text link
    Space-filling curves can be used to organise points in the plane into bounding-box hierarchies (such as R-trees). We develop measures of the bounding-box quality of space-filling curves that express how effective different space-filling curves are for this purpose. We give general lower bounds on the bounding-box quality measures and on locality according to Gotsman and Lindenbaum for a large class of space-filling curves. We describe a generic algorithm to approximate these and similar quality measures for any given curve. Using our algorithm we find good approximations of the locality and the bounding-box quality of several known and new space-filling curves. Surprisingly, some curves with relatively bad locality by Gotsman and Lindenbaum's measure, have good bounding-box quality, while the curve with the best-known locality has relatively bad bounding-box quality.Comment: 24 pages, full version of paper to appear in ESA. Difference with first version: minor editing; Fig. 2(m) correcte
    • …
    corecore