470 research outputs found

    Controllability Problem of Fractional Neutral Systems: A Survey

    Get PDF
    The following article presents recent results of controllability problem of dynamical systems in infinite-dimensional space. Generally speaking, we describe selected controllability problems of fractional order systems, including approximate controllability of fractional impulsive partial neutral integrodifferential inclusions with infinite delay in Hilbert spaces, controllability of nonlinear neutral fractional impulsive differential inclusions in Banach space, controllability for a class of fractional neutral integrodifferential equations with unbounded delay, controllability of neutral fractional functional equations with impulses and infinite delay, and controllability for a class of fractional order neutral evolution control systems

    Optimal Control and Approximate controllability of fractional semilinear differential inclusion involving ψ\psi- Hilfer fractional derivatives

    Full text link
    The current paper initially studies the optimal control of linear ψ\psi-Hilfer fractional derivatives with state-dependent control constraints and optimal control for a particular type of cost functional. Then, we investigate the approximate controllability of the abstract fractional semilinear differential inclusion involving ψ\psi-Hilfer fractional derivative in reflexive Banach spaces. It is known that the existence, uniqueness, optimal control, and approximate controllability of fractional differential equations or inclusions have been demonstrated for a similar type of fractional differential equations or inclusions with different fractional order derivative operators. Hence it has to research fractional differential equations with more general fractional operators which incorporate all the specific fractional derivative operators. This motivates us to consider the ψ\psi-Hilfer fractional differential inclusion. We assume the compactness of the corresponding semigroup and the approximate controllability of the associated linear control system and define the control with the help of duality mapping. We observe that convexity is essential in determining the controllability property of semilinear differential inclusion. In the case of Hilbert spaces, there is no issue of convexity as the duality map becomes simply the identity map. In contrast to Hilbert spaces, if we consider reflexive Banach spaces, there is an issue of convexity due to the nonlinear nature of duality mapping. The novelty of this paper is that we overcome this convexity issue and establish our main result. Finally, we test our outcomes through an example.Comment: 39 page

    A survey on fuzzy fractional differential and optimal control nonlocal evolution equations

    Full text link
    We survey some representative results on fuzzy fractional differential equations, controllability, approximate controllability, optimal control, and optimal feedback control for several different kinds of fractional evolution equations. Optimality and relaxation of multiple control problems, described by nonlinear fractional differential equations with nonlocal control conditions in Banach spaces, are considered.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Applied Mathematics', ISSN: 0377-0427. Submitted 17-July-2017; Revised 18-Sept-2017; Accepted for publication 20-Sept-2017. arXiv admin note: text overlap with arXiv:1504.0515

    Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative

    Full text link
    This paper investigates the regional gradient controllability for ultra-slow diffusion processes governed by the time fractional diffusion systems with a Hadamard-Caputo time fractional derivative. Some necessary and sufficient conditions on regional gradient exact and approximate controllability are first given and proved in detail. Secondly, we propose an approach on how to calculate the minimum number of ω−\omega-strategic actuators. Moreover, the existence, uniqueness and the concrete form of the optimal controller for the system under consideration are presented by employing the Hilbert Uniqueness Method (HUM) among all the admissible ones. Finally, we illustrate our results by an interesting example.Comment: 16 page

    Solvability of control problem for fractional nonlinear differential inclusions with nonlocal conditions

    Get PDF
    In this paper, we study the approximate controllability of nonlocal fractional differential inclusions involving the Caputo fractional derivative of order q ∈ (1,2) in a Hilbert space. Utilizing measure of noncompactness and multivalued fixed point strategy, a new set of sufficient conditions is obtained to ensure the approximate controllability of nonlocal fractional differential inclusions when the multivalued maps are convex. Precisely, the results are developed under the assumption that the corresponding linear system is approximately controllable.   &nbsp

    On Approximately Controlled Systems

    Get PDF
    • …
    corecore