21,899 research outputs found

    Handling non-ignorable dropouts in longitudinal data: A conditional model based on a latent Markov heterogeneity structure

    Full text link
    We illustrate a class of conditional models for the analysis of longitudinal data suffering attrition in random effects models framework, where the subject-specific random effects are assumed to be discrete and to follow a time-dependent latent process. The latent process accounts for unobserved heterogeneity and correlation between individuals in a dynamic fashion, and for dependence between the observed process and the missing data mechanism. Of particular interest is the case where the missing mechanism is non-ignorable. To deal with the topic we introduce a conditional to dropout model. A shape change in the random effects distribution is considered by directly modeling the effect of the missing data process on the evolution of the latent structure. To estimate the resulting model, we rely on the conditional maximum likelihood approach and for this aim we outline an EM algorithm. The proposal is illustrated via simulations and then applied on a dataset concerning skin cancers. Comparisons with other well-established methods are provided as well

    Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians

    Full text link
    This paper presents a general and efficient framework for probabilistic inference and learning from arbitrary uncertain information. It exploits the calculation properties of finite mixture models, conjugate families and factorization. Both the joint probability density of the variables and the likelihood function of the (objective or subjective) observation are approximated by a special mixture model, in such a way that any desired conditional distribution can be directly obtained without numerical integration. We have developed an extended version of the expectation maximization (EM) algorithm to estimate the parameters of mixture models from uncertain training examples (indirect observations). As a consequence, any piece of exact or uncertain information about both input and output values is consistently handled in the inference and learning stages. This ability, extremely useful in certain situations, is not found in most alternative methods. The proposed framework is formally justified from standard probabilistic principles and illustrative examples are provided in the fields of nonparametric pattern classification, nonlinear regression and pattern completion. Finally, experiments on a real application and comparative results over standard databases provide empirical evidence of the utility of the method in a wide range of applications

    Integration of survey data and big observational data for finite population inference using mass imputation

    Get PDF
    Multiple data sources are becoming increasingly available for statistical analyses in the era of big data. As an important example in finite-population inference, we consider an imputation approach to combining a probability sample with big observational data. Unlike the usual imputation for missing data analysis, we create imputed values for the whole elements in the probability sample. Such mass imputation is attractive in the context of survey data integration (Kim and Rao, 2012). We extend mass imputation as a tool for data integration of survey data and big non-survey data. The mass imputation methods and their statistical properties are presented. The matching estimator of Rivers (2007) is also covered as a special case. Variance estimation with mass-imputed data is discussed. The simulation results demonstrate the proposed estimators outperform existing competitors in terms of robustness and efficiency

    Monte Carlo modified profile likelihood in models for clustered data

    Get PDF
    The main focus of the analysts who deal with clustered data is usually not on the clustering variables, and hence the group-specific parameters are treated as nuisance. If a fixed effects formulation is preferred and the total number of clusters is large relative to the single-group sizes, classical frequentist techniques relying on the profile likelihood are often misleading. The use of alternative tools, such as modifications to the profile likelihood or integrated likelihoods, for making accurate inference on a parameter of interest can be complicated by the presence of nonstandard modelling and/or sampling assumptions. We show here how to employ Monte Carlo simulation in order to approximate the modified profile likelihood in some of these unconventional frameworks. The proposed solution is widely applicable and is shown to retain the usual properties of the modified profile likelihood. The approach is examined in two instances particularly relevant in applications, i.e. missing-data models and survival models with unspecified censoring distribution. The effectiveness of the proposed solution is validated via simulation studies and two clinical trial applications
    • …
    corecore