155 research outputs found

    Fast Approximate Spectral Clustering for Dynamic Networks

    Get PDF
    Spectral clustering is a widely studied problem, yet its complexity is prohibitive for dynamic graphs of even modest size. We claim that it is possible to reuse information of past cluster assignments to expedite computation. Our approach builds on a recent idea of sidestepping the main bottleneck of spectral clustering, i.e., computing the graph eigenvectors, by using fast Chebyshev graph filtering of random signals. We show that the proposed algorithm achieves clustering assignments with quality approximating that of spectral clustering and that it can yield significant complexity benefits when the graph dynamics are appropriately bounded

    Variational Quantum Approximate Spectral Clustering for Binary Clustering Problems

    Full text link
    In quantum machine learning, algorithms with parameterized quantum circuits (PQC) based on a hardware-efficient ansatz (HEA) offer the potential for speed-ups over traditional classical algorithms. While much attention has been devoted to supervised learning tasks, unsupervised learning using PQC remains relatively unexplored. One promising approach within quantum machine learning involves optimizing fewer parameters in PQC than in its classical counterparts, under the assumption that a sub-optimal solution exists within the Hilbert space. In this paper, we introduce the Variational Quantum Approximate Spectral Clustering (VQASC) algorithm - a NISQ-compatible method that requires optimization of fewer parameters than the system size, N, traditionally required in classical problems. We present numerical results from both synthetic and real-world datasets. Furthermore, we propose a descriptor, complemented by numerical analysis, to identify an appropriate ansatz circuit tailored for VQASC.Comment: 21 pages, 6 figure

    Large Scale Spectral Clustering Using Approximate Commute Time Embedding

    Full text link
    Spectral clustering is a novel clustering method which can detect complex shapes of data clusters. However, it requires the eigen decomposition of the graph Laplacian matrix, which is proportion to O(n3)O(n^3) and thus is not suitable for large scale systems. Recently, many methods have been proposed to accelerate the computational time of spectral clustering. These approximate methods usually involve sampling techniques by which a lot information of the original data may be lost. In this work, we propose a fast and accurate spectral clustering approach using an approximate commute time embedding, which is similar to the spectral embedding. The method does not require using any sampling technique and computing any eigenvector at all. Instead it uses random projection and a linear time solver to find the approximate embedding. The experiments in several synthetic and real datasets show that the proposed approach has better clustering quality and is faster than the state-of-the-art approximate spectral clustering methods

    Fast Spectral Clustering Using Autoencoders and Landmarks

    Full text link
    In this paper, we introduce an algorithm for performing spectral clustering efficiently. Spectral clustering is a powerful clustering algorithm that suffers from high computational complexity, due to eigen decomposition. In this work, we first build the adjacency matrix of the corresponding graph of the dataset. To build this matrix, we only consider a limited number of points, called landmarks, and compute the similarity of all data points with the landmarks. Then, we present a definition of the Laplacian matrix of the graph that enable us to perform eigen decomposition efficiently, using a deep autoencoder. The overall complexity of the algorithm for eigen decomposition is O(np)O(np), where nn is the number of data points and pp is the number of landmarks. At last, we evaluate the performance of the algorithm in different experiments.Comment: 8 Pages- Accepted in 14th International Conference on Image Analysis and Recognitio

    Performance Analysis of Spectral Clustering on Compressed, Incomplete and Inaccurate Measurements

    Full text link
    Spectral clustering is one of the most widely used techniques for extracting the underlying global structure of a data set. Compressed sensing and matrix completion have emerged as prevailing methods for efficiently recovering sparse and partially observed signals respectively. We combine the distance preserving measurements of compressed sensing and matrix completion with the power of robust spectral clustering. Our analysis provides rigorous bounds on how small errors in the affinity matrix can affect the spectral coordinates and clusterability. This work generalizes the current perturbation results of two-class spectral clustering to incorporate multi-class clustering with k eigenvectors. We thoroughly track how small perturbation from using compressed sensing and matrix completion affect the affinity matrix and in succession the spectral coordinates. These perturbation results for multi-class clustering require an eigengap between the kth and (k+1)th eigenvalues of the affinity matrix, which naturally occurs in data with k well-defined clusters. Our theoretical guarantees are complemented with numerical results along with a number of examples of the unsupervised organization and clustering of image data
    • …
    corecore