4,028 research outputs found

    Hybrid approximate message passing

    Full text link
    Gaussian and quadratic approximations of message passing algorithms on graphs have attracted considerable recent attention due to their computational simplicity, analytic tractability, and wide applicability in optimization and statistical inference problems. This paper presents a systematic framework for incorporating such approximate message passing (AMP) methods in general graphical models. The key concept is a partition of dependencies of a general graphical model into strong and weak edges, with the weak edges representing interactions through aggregates of small, linearizable couplings of variables. AMP approximations based on the Central Limit Theorem can be readily applied to aggregates of many weak edges and integrated with standard message passing updates on the strong edges. The resulting algorithm, which we call hybrid generalized approximate message passing (HyGAMP), can yield significantly simpler implementations of sum-product and max-sum loopy belief propagation. By varying the partition of strong and weak edges, a performance--complexity trade-off can be achieved. Group sparsity and multinomial logistic regression problems are studied as examples of the proposed methodology.The work of S. Rangan was supported in part by the National Science Foundation under Grants 1116589, 1302336, and 1547332, and in part by the industrial affiliates of NYU WIRELESS. The work of A. K. Fletcher was supported in part by the National Science Foundation under Grants 1254204 and 1738286 and in part by the Office of Naval Research under Grant N00014-15-1-2677. The work of V. K. Goyal was supported in part by the National Science Foundation under Grant 1422034. The work of E. Byrne and P. Schniter was supported in part by the National Science Foundation under Grant CCF-1527162. (1116589 - National Science Foundation; 1302336 - National Science Foundation; 1547332 - National Science Foundation; 1254204 - National Science Foundation; 1738286 - National Science Foundation; 1422034 - National Science Foundation; CCF-1527162 - National Science Foundation; NYU WIRELESS; N00014-15-1-2677 - Office of Naval Research

    Naive Feature Selection: Sparsity in Naive Bayes

    Full text link
    Due to its linear complexity, naive Bayes classification remains an attractive supervised learning method, especially in very large-scale settings. We propose a sparse version of naive Bayes, which can be used for feature selection. This leads to a combinatorial maximum-likelihood problem, for which we provide an exact solution in the case of binary data, or a bound in the multinomial case. We prove that our bound becomes tight as the marginal contribution of additional features decreases. Both binary and multinomial sparse models are solvable in time almost linear in problem size, representing a very small extra relative cost compared to the classical naive Bayes. Numerical experiments on text data show that the naive Bayes feature selection method is as statistically effective as state-of-the-art feature selection methods such as recursive feature elimination, l1l_1-penalized logistic regression and LASSO, while being orders of magnitude faster. For a large data set, having more than with 1.61.6 million training points and about 1212 million features, and with a non-optimized CPU implementation, our sparse naive Bayes model can be trained in less than 15 seconds

    A sparse multinomial probit model for classification

    No full text
    A recent development in penalized probit modelling using a hierarchical Bayesian approach has led to a sparse binomial (two-class) probit classifier that can be trained via an EM algorithm. A key advantage of the formulation is that no tuning of hyperparameters relating to the penalty is needed thus simplifying the model selection process. The resulting model demonstrates excellent classification performance and a high degree of sparsity when used as a kernel machine. It is, however, restricted to the binary classification problem and can only be used in the multinomial situation via a one-against-all or one-against-many strategy. To overcome this, we apply the idea to the multinomial probit model. This leads to a direct multi-classification approach and is shown to give a sparse solution with accuracy and sparsity comparable with the current state-of-the-art. Comparative numerical benchmark examples are used to demonstrate the method

    GAP Safe screening rules for sparse multi-task and multi-class models

    Full text link
    High dimensional regression benefits from sparsity promoting regularizations. Screening rules leverage the known sparsity of the solution by ignoring some variables in the optimization, hence speeding up solvers. When the procedure is proven not to discard features wrongly the rules are said to be \emph{safe}. In this paper we derive new safe rules for generalized linear models regularized with â„“1\ell_1 and â„“1/â„“2\ell_1/\ell_2 norms. The rules are based on duality gap computations and spherical safe regions whose diameters converge to zero. This allows to discard safely more variables, in particular for low regularization parameters. The GAP Safe rule can cope with any iterative solver and we illustrate its performance on coordinate descent for multi-task Lasso, binary and multinomial logistic regression, demonstrating significant speed ups on all tested datasets with respect to previous safe rules.Comment: in Proceedings of the 29-th Conference on Neural Information Processing Systems (NIPS), 201

    Variational Bayesian multinomial probit regression with Gaussian process priors

    Get PDF
    It is well known in the statistics literature that augmenting binary and polychotomous response models with Gaussian latent variables enables exact Bayesian analysis via Gibbs sampling from the parameter posterior. By adopting such a data augmentation strategy, dispensing with priors over regression coefficients in favour of Gaussian Process (GP) priors over functions, and employing variational approximations to the full posterior we obtain efficient computational methods for Gaussian Process classification in the multi-class setting. The model augmentation with additional latent variables ensures full a posteriori class coupling whilst retaining the simple a priori independent GP covariance structure from which sparse approximations, such as multi-class Informative Vector Machines (IVM), emerge in a very natural and straightforward manner. This is the first time that a fully Variational Bayesian treatment for multi-class GP classification has been developed without having to resort to additional explicit approximations to the non-Gaussian likelihood term. Empirical comparisons with exact analysis via MCMC and Laplace approximations illustrate the utility of the variational approximation as a computationally economic alternative to full MCMC and it is shown to be more accurate than the Laplace approximation
    • …
    corecore