101,380 research outputs found

    Dominance Product and High-Dimensional Closest Pair under L∞L_\infty

    Get PDF
    Given a set SS of nn points in Rd\mathbb{R}^d, the Closest Pair problem is to find a pair of distinct points in SS at minimum distance. When dd is constant, there are efficient algorithms that solve this problem, and fast approximate solutions for general dd. However, obtaining an exact solution in very high dimensions seems to be much less understood. We consider the high-dimensional L∞L_\infty Closest Pair problem, where d=nrd=n^r for some r>0r > 0, and the underlying metric is L∞L_\infty. We improve and simplify previous results for L∞L_\infty Closest Pair, showing that it can be solved by a deterministic strongly-polynomial algorithm that runs in O(DP(n,d)log⁑n)O(DP(n,d)\log n) time, and by a randomized algorithm that runs in O(DP(n,d))O(DP(n,d)) expected time, where DP(n,d)DP(n,d) is the time bound for computing the {\em dominance product} for nn points in Rd\mathbb{R}^d. That is a matrix DD, such that D[i,j]=∣{k∣pi[k]≀pj[k]}∣D[i,j] = \bigl| \{k \mid p_i[k] \leq p_j[k]\} \bigr|; this is the number of coordinates at which pjp_j dominates pip_i. For integer coordinates from some interval [βˆ’M,M][-M, M], we obtain an algorithm that runs in O~(min⁑{MnΟ‰(1,r,1), DP(n,d)})\tilde{O}\left(\min\{Mn^{\omega(1,r,1)},\, DP(n,d)\}\right) time, where Ο‰(1,r,1)\omega(1,r,1) is the exponent of multiplying an nΓ—nrn \times n^r matrix by an nrΓ—nn^r \times n matrix. We also give slightly better bounds for DP(n,d)DP(n,d), by using more recent rectangular matrix multiplication bounds. Computing the dominance product itself is an important task, since it is applied in many algorithms as a major black-box ingredient, such as algorithms for APBP (all pairs bottleneck paths), and variants of APSP (all pairs shortest paths)

    Net and Prune: A Linear Time Algorithm for Euclidean Distance Problems

    Full text link
    We provide a general framework for getting expected linear time constant factor approximations (and in many cases FPTAS's) to several well known problems in Computational Geometry, such as kk-center clustering and farthest nearest neighbor. The new approach is robust to variations in the input problem, and yet it is simple, elegant and practical. In particular, many of these well studied problems which fit easily into our framework, either previously had no linear time approximation algorithm, or required rather involved algorithms and analysis. A short list of the problems we consider include farthest nearest neighbor, kk-center clustering, smallest disk enclosing kk points, kkth largest distance, kkth smallest mm-nearest neighbor distance, kkth heaviest edge in the MST and other spanning forest type problems, problems involving upward closed set systems, and more. Finally, we show how to extend our framework such that the linear running time bound holds with high probability

    Preconditioned Locally Harmonic Residual Method for Computing Interior Eigenpairs of Certain Classes of Hermitian Matrices

    Full text link
    We propose a Preconditioned Locally Harmonic Residual (PLHR) method for computing several interior eigenpairs of a generalized Hermitian eigenvalue problem, without traditional spectral transformations, matrix factorizations, or inversions. PLHR is based on a short-term recurrence, easily extended to a block form, computing eigenpairs simultaneously. PLHR can take advantage of Hermitian positive definite preconditioning, e.g., based on an approximate inverse of an absolute value of a shifted matrix, introduced in [SISC, 35 (2013), pp. A696-A718]. Our numerical experiments demonstrate that PLHR is efficient and robust for certain classes of large-scale interior eigenvalue problems, involving Laplacian and Hamiltonian operators, especially if memory requirements are tight
    • …
    corecore