10,258 research outputs found

    Dynamical Functional Theory for Compressed Sensing

    Get PDF
    We introduce a theoretical approach for designing generalizations of the approximate message passing (AMP) algorithm for compressed sensing which are valid for large observation matrices that are drawn from an invariant random matrix ensemble. By design, the fixed points of the algorithm obey the Thouless-Anderson-Palmer (TAP) equations corresponding to the ensemble. Using a dynamical functional approach we are able to derive an effective stochastic process for the marginal statistics of a single component of the dynamics. This allows us to design memory terms in the algorithm in such a way that the resulting fields become Gaussian random variables allowing for an explicit analysis. The asymptotic statistics of these fields are consistent with the replica ansatz of the compressed sensing problem.Comment: 5 pages, accepted for ISIT 201

    Belief propagation decoding of quantum channels by passing quantum messages

    Full text link
    Belief propagation is a powerful tool in statistical physics, machine learning, and modern coding theory. As a decoding method, it is ubiquitous in classical error correction and has also been applied to stabilizer-based quantum error correction. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding, in some cases even up to the Shannon capacity of the channel. Here we construct a belief propagation algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the blocklength of the code. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a polar decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.Comment: v3: final version for publication; v2: improved discussion of the algorithm; 7 pages & 2 figures. v1: 6 pages, 1 figur

    Unitary Approximate Message Passing for Sparse Bayesian Learning and Bilinear Recovery

    Get PDF
    Over the past several years, the approximate message passing (AMP) algorithm has been applied to a broad range of problems, including compressed sensing (CS), robust regression, Bayesian estimation, etc. AMP was originally developed for compressed sensing based on the loopy belief propagation (BP). Compared to convex optimization based algorithms, AMP has low complexity and its performance can be rigorously characterized by a scalar state evolution (SE) in the case of a large independent and identically distributed (i.i.d.) (sub-) Gaussian matrix. AMP was then extended to solve general estimation problems with a generalized linear observation model. However, AMP performs poorly on a generic matrix such as non-zero mean, rank-deficient, correlated, or ill-conditioned matrix, resulting in divergence and degraded performance. It was discovered later that applying AMP to a unitary transform of the original model can remarkably enhance the robustness to difficult matrices. This variant is named unitary AMP (UAMP), or formally called UTAMP. In this thesis, leveraging UAMP, we propose UAMP-SBL for sparse signal recovery and Bi-UAMP for bilinear recovery, both of which inherit the low complexity and robustness of UAMP. Sparse Bayesian learning (SBL) is a powerful tool for recovering a sparse signal from noisy measurements, which finds numerous applications in various areas. As a traditional implementation of SBL, e.g., Tipping’s method, involves matrix inversion in each iteration, the computational complexity can be prohibitive for large scale problems. To circumvent this, AMP and its variants have been used as low-complexity solutions. Unfortunately, they will diverge for ‘difficult’ measurement matrices as previously mentioned. In this thesis, leveraging UAMP, a novel SBL algorithm called UAMP-SBL is proposed where UAMP is incorporated into the structured variational message passing (SVMP) to handle the most computationally intensive part of message computations. It is shown that, compared to state-of-the-art AMP based SBL algorithms, the proposed UAMP-SBL is more robust and efficient, leading to remarkably better performance. The bilinear recovery problem has many applications such as dictionary learning, selfcalibration, compressed sensing with matrix uncertainty, etc. Compared to existing nonmessage passing alternates, several AMP based algorithms have been developed to solve bilinear problems. By using UAMP, a more robust and faster approximate inference algorithm for bilinear recovery is proposed in this thesis, which is called Bi-UAMP. With the lifting approach, the original bilinear problem is reformulated as a linear one. Then, variational inference (VI), expectation propagation (EP) and BP are combined with UAMP to implement the approximate inference algorithm Bi-UAMP, where UAMP is adopted for the most computationally intensive part. It is shown that, compared to state-of-the-art bilinear recovery algorithms, the proposed Bi-UAMP is much more robust and faster, and delivers significantly better performance. Recently, UAMP has also been employed for many other applications such as inverse synthetic aperture radar (ISAR) imaging, low-complexity direction of arrival (DOA) estimation, iterative detection for orthogonal time frequency space modulation (OTFS), channel estimation for RIS-Aided MIMO communications, etc. Promising performance was achieved in all of the applications, and more applications of UAMP are expected in the future

    Orthogonal Transform Multiplexing with Memoryless Nonlinearity: a Possible Alternative to Traditional Coded-Modulation Schemes

    Full text link
    In this paper, we propose a novel joint coding-modulation technique based on serial concatenation of orthogonal linear transform, such as discrete Fourier transform (DFT) or Walsh-Hadamard transform (WHT), with memoryless nonlinearity. We demonstrate that such a simple signal construction may exhibit properties of a random code ensemble, as a result approaching channel capacity. Our computer simulations confirm that if the decoder relies on a modified approximate message passing algorithm, the proposed modulation technique exhibits performance on par with state-of-the-art coded modulation schemes that use capacity-approaching component codes. The proposed modulation scheme could be used directly or as a pre-coder for a conventional orthogonal frequency division multiplexing (OFDM) transmitter, resulting in a system possessing all benefits of OFDM along with reduced peak-to-average power ratio (PAPR)

    Reexamination of Quantum Bit Commitment: the Possible and the Impossible

    Full text link
    Bit commitment protocols whose security is based on the laws of quantum mechanics alone are generally held to be impossible. In this paper we give a strengthened and explicit proof of this result. We extend its scope to a much larger variety of protocols, which may have an arbitrary number of rounds, in which both classical and quantum information is exchanged, and which may include aborts and resets. Moreover, we do not consider the receiver to be bound to a fixed "honest" strategy, so that "anonymous state protocols", which were recently suggested as a possible way to beat the known no-go results are also covered. We show that any concealing protocol allows the sender to find a cheating strategy, which is universal in the sense that it works against any strategy of the receiver. Moreover, if the concealing property holds only approximately, the cheat goes undetected with a high probability, which we explicitly estimate. The proof uses an explicit formalization of general two party protocols, which is applicable to more general situations, and a new estimate about the continuity of the Stinespring dilation of a general quantum channel. The result also provides a natural characterization of protocols that fall outside the standard setting of unlimited available technology, and thus may allow secure bit commitment. We present a new such protocol whose security, perhaps surprisingly, relies on decoherence in the receiver's lab.Comment: v1: 26 pages, 4 eps figures. v2: 31 pages, 5 eps figures; replaced with published version; title changed to comply with puzzling Phys. Rev. regulations; impossibility proof extended to protocols with infinitely many rounds or a continuous communication tree; security proof of decoherence monster protocol expanded; presentation clarifie
    • 

    corecore