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Abstract

Over the past several years, the approximate message passing (AMP) algorithm has been

applied to a broad range of problems, including compressed sensing (CS), robust regres-

sion, Bayesian estimation, etc. AMP was originally developed for compressed sensing

based on the loopy belief propagation (BP). Compared to convex optimization based

algorithms, AMP has low complexity and its performance can be rigorously character-

ized by a scalar state evolution (SE) in the case of a large independent and identically

distributed (i.i.d.) (sub-) Gaussian matrix. AMP was then extended to solve general

estimation problems with a generalized linear observation model. However, AMP per-

forms poorly on a generic matrix such as non-zero mean, rank-deficient, correlated, or

ill-conditioned matrix, resulting in divergence and degraded performance. It was discov-

ered later that applying AMP to a unitary transform of the original model can remarkably

enhance the robustness to difficult matrices. This variant is named unitary AMP (UAMP),

or formally called UTAMP. In this thesis, leveraging UAMP, we propose UAMP-SBL for

sparse signal recovery and Bi-UAMP for bilinear recovery, both of which inherit the low

complexity and robustness of UAMP.

Sparse Bayesian learning (SBL) is a powerful tool for recovering a sparse signal from

noisy measurements, which finds numerous applications in various areas. As a tradi-

tional implementation of SBL, e.g., Tipping’s method, involves matrix inversion in each

iteration, the computational complexity can be prohibitive for large scale problems. To

circumvent this, AMP and its variants have been used as low-complexity solutions. Unfor-

tunately, they will diverge for ‘difficult’ measurement matrices as previously mentioned.

In this thesis, leveraging UAMP, a novel SBL algorithm called UAMP-SBL is proposed

where UAMP is incorporated into the structured variational message passing (SVMP) to
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handle the most computationally intensive part of message computations. It is shown

that, compared to state-of-the-art AMP based SBL algorithms, the proposed UAMP-SBL

is more robust and efficient, leading to remarkably better performance.

The bilinear recovery problem has many applications such as dictionary learning, self-

calibration, compressed sensing with matrix uncertainty, etc. Compared to existing non-

message passing alternates, several AMP based algorithms have been developed to solve

bilinear problems. By using UAMP, a more robust and faster approximate inference algo-

rithm for bilinear recovery is proposed in this thesis, which is called Bi-UAMP. With the

lifting approach, the original bilinear problem is reformulated as a linear one. Then, vari-

ational inference (VI), expectation propagation (EP) and BP are combined with UAMP

to implement the approximate inference algorithm Bi-UAMP, where UAMP is adopted

for the most computationally intensive part. It is shown that, compared to state-of-the-art

bilinear recovery algorithms, the proposed Bi-UAMP is much more robust and faster, and

delivers significantly better performance.

Recently, UAMP has also been employed for many other applications such as inverse

synthetic aperture radar (ISAR) imaging, low-complexity direction of arrival (DOA) esti-

mation, iterative detection for orthogonal time frequency space modulation (OTFS), chan-

nel estimation for RIS-Aided MIMO communications, etc. Promising performance was

achieved in all of the applications, and more applications of UAMP are expected in the

future.
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Chapter 1

Introduction

1.1 Research Background

The sparse signal recovery (SSR) problem has many applications such as the radar de-

tection [1], the direction-of-arrival (DOA) estimation [2], the magnetic resonance imag-

ing (MRI) [3] and the electroencephalography (EEG)/magnetoencephalography (MEG)

source localization [4]. Among approaches used to recover sparse signals, sparse Bayesian

learning has drawn much attention due to its ability to handle challenging problems, such

as highly under-determined inverse problems and recovering signals with few sparsity [5].

For an SBL problem, the model can be written as:

y = Ax + w, (1.1)

where y is an observation vector with length M, A is a known matrix with size M × N

(M ≤ N) and x is a length-N sparse vector to be recovered. w denotes a Gaussian noise

vector with mean zero and covariance matrix β−1I. The above problem can be extended

to a multiple measurement vector (MMV) problem by replacing vectors y, x and w with

relevant matrices. SBL was first proposed in the context of machine learning in 2001 by

Tipping [6] and it was adapted to be used for SSR in 2004 [7]. For the problem of sparse

signal recovery, the traditional SBL algorithm can produce accurate estimates. However,

the traditional implementation of SBL depends on computing multiple matrix inversions

at each iteration. These matrix inversions in SBL are computationally expensive, which

1



1.1. RESEARCH BACKGROUND 2

limits the applicability of SBL algorithms to large scale problems. To address this issue,

focusing on the expectation maximization (EM) based SBL algorithm in [6], the imple-

mentation of the E-step using AMP has been investigated. For instance, Gaussian general-

ized AMP (GGAMP) was used in [8] to implement the E-Step, where sufficient damping

is used to enhance the robustness of the algorithm against a generic measurement matrix.

This leads to the GGAMP-SBL algorithm with complexity significantly lower than that of

SBL. However, the use of damping slows the convergence of the algorithm. Furthermore,

we have observed that GGAMP-SBL still exhibits significant performance loss in the case

of measurement matrices with relatively high correlation, condition number, or non-zero

mean.

This thesis also aims to address the bilinear recovery problem, which is involved in

many research areas like dictionary learning [9], self-calibration [10], compressed sensing

with matrix uncertainty [11], etc. The bilinear recovery problem can be formulated that

when known Ak are given, b and sparse C are to be estimated. The model is given by

Y =
K∑

k=1

bkAkC +W, (1.2)

where {bk} and C are jointly recovered with known Ak from the noisy measurements Y.

Many algorithms have been developed to solve the bilinear problem. Some solve a convex

relaxation of the original problem, while others adopt non-convex formulations via alter-

nating methods [12], greedy methods, variational methods, message-passing methods,

and other techniques [13]. Recently, several AMP based algorithms have been developed

to address the bilinear problem, which show promising performance, compared to these

non-message passing alternates [14]. The GAMP [15] was extended to bilinear GAMP

(BiGAMP) [16] and then the parametric BiGAMP (P-BiGAMP) [17]. Lifted AMP was

proposed in [18] by using the lifting approach [10, 19]. However, these AMP based

algorithms are vulnerable to difficult A matrices, e.g., ill-conditioned, correlated, rank-

deficient or non-zero mean matrices, as AMP can easily diverge in these cases [20]. Most

recently, several algorithms based on vector AMP (VAMP) aimed to address this diver-

gence issue [21]. Several VAMP based algorithms have been proposed, such as the lifted

VAMP in [22], the bilinear adaptive VAMP (BAd-VAMP) in [14] and PC-VAMP in [23].



1.2. RESEARCH MOTIVATIONS 3

However, VAMP involves the calculations of two “extrinsic” precisions [14], which can

be negative. These VAMP based algorithms are all badly affected by the VAMP-related

instability issue, especially in the case of tough measurement matrices or some special

priors.

1.2 Research Motivations

Unitary approximate message passing, called UAMP for convenience, was inspired by the

work in [24], which can be regarded as the first application of UAMP to turbo equaliza-

tion, where the normalized discrete Fourier transform matrix is used for unitary transfor-

mation. UAMP was proposed in 2015 [25]. It was discovered that the AMP algorithm can

still work well for difficult A [20]. Instead of employing the original model (1.1), AMP

is applied to a unitary transform of (1.1) in UAMP. As any matrix A has a singular value

decomposition (SVD) A = UΛV, a unitary transformation with UH can be performed,

yielding

r = Φx + ω, (1.3)

where r = UHy, Φ = UHA = ΛV and Λ is an M × N (M ≤ N) rectangular diagonal

matrix. ω = UHw is still a zero-mean Gaussian noise vector with the same covariance

matrix β−1I and UH is a unitary matrix. It is noted that in the case of a circulant matrix

A, e.g., in frequency domain equalization, the matrix for unitary transformation can be

simply the normalized discrete Fourier transform matrix, which allows a more efficient

implementation of the UAMP algorithm [24]. It is interesting that, with such a simple pre-

processing, the robustness of AMP is remarkably enhanced, enabling it to handle difficult

matrix A.

UAMP is recently employed for inverse synthetic aperture radar (ISAR) imaging [26].

Real data experiments show its excellent capability of achieving high Doppler resolution

with low complexity, where the measurement matrix can be highly correlated to achieve

high Doppler resolution. The application of UAMP to low complexity direction of arrival

estimation is also studied in [27]. UAMP has also been employed for iterative detection

for orthogonal time frequency space modulation (OTFS) [28], which shows promising
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performance.

VAMP and orthogonal AMP (OAMP) [29] are different to the UAMP algorithm and

either of them consists of an LMMSE estimator and an MMSE denoiser. As the LMMSE

estimator requires cubic complexity per iteration, which can be very high in applications

with large-scale matrices, the LMMSE estimator is implemented with the aid of SVD.

Two explicit expectation propagation (EP) operations are carried out between the iter-

ations of the two modules. These two explicit EP operations lead to the computations

of “extrinsic” precisions. The explicit computations of two “extrinsic” precisions are re-

quired. A problem is that the two gamma parameters can become negative in the iteration.

However, these gamma parameters are essentially precisions and they should be positive.

Although some remedies have been proposed, e.g., simply taking the absolute value of the

calculated gamma, the treatments are heuristic without theoretical support. By contrast,

there is no such problem in UAMP.

Promising performance and high robustness of UAMP in applications bring the motiva-

tion of designing efficient and robust sparse signal recovery algorithms in this thesis. The

UAMP algorithm is applied for sparse Bayesian learning problems, resulting in a novel

SBL algorithm called UAMP-SBL. Moreover, leveraging UAMP, an approximate infer-

ence algorithm for bilinear recovery is also proposed, which is called Bi-UAMP. Both of

these algorithms can achieve more efficient signal recovery with significantly enhanced

robustness, high performance and reduced complexity, compared to other state-of-the-art

algorithms.

1.3 Research Contributions

In this thesis, leveraging UAMP algorithm, more efficient and robust algorithms for SBL

and bilinear recovery have been proposed. To be more specific:

• In the first work, the empirical SE-based performance prediction for UAMP is in-

vestigated. The SE equation derived is with a high efficiency while the presentation

is not complicated to understand. By using the empirical SE of UAMP, how to pre-

dict the performance of UAMP-SBL empirically is also investigated. The UAMP-
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SBL is treated as UAMP with a special denoiser, enabling the use of UAMP-SE to

predict the performance of UAMP-SBL.

• In the second work, a new SBL algorithm based on structured variational infer-

ence is proposed, leveraging AMP with a unitary transformation (UAMP-SBL). A

Gamma distribution is employed as the hyperprior and the shape parameter of the

Gamma distribution is tuned automatically during iterations. With these improve-

ment, the proposed UAMP-SBL algorithm can approach the support-oracle bound

closely in many cases with a generic measurement matrix. The impact of the shape

parameter on SBL is also analyzed. Moreover, the proposed algorithm is extended

from SMV problems to MMV problems. Complete comparison experiments are of-

fered to clearly demonstrate the advantage of the proposed UAMP-SBL algorithm

to other state-of-the-art ones.

• In the third work, a new approximate Bayesian inference algorithm is proposed

for bilinear recovery and named as Bi-UAMP. This new approximate inference al-

gorithm is designed by integrating the UAMP algorithm with BP, VI and EP to

achieve efficient approximate inference. This proposed algorithm is also extended

from SMV problems to MMV problems. From numerous experimental results, it is

proved that the proposed Bi-UAMP is much more robust and faster than the other

state-of-the-art algorithms.

1.4 Thesis Organization

The rest of this thesis is organized as follows, which is shown by the diagram in Fig-

ure 1.1. In Chapter 2, a literature review of current research is presented. Firstly AMP

is introduced and various AMP-based techniques designed for solving the signal recov-

ery problem are described. Then, the conventional SBL algorithm is explained in detail.

Since the traditional implementation of SBL uses matrix inversions at each iteration, its

complexity is too high for large-scale problems. AMP and its variants used for the low

complexity implementation of SBL are reviewed. Finally, the bilinear recovery problem

is presented. Since AMP based algorithms are vulnerable to difficult A matrices. To
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Chapter 1:

Introduction

Chapter 2:

Literature Review

Chapter 6:

Conclusion

Chapter 3:

Variational Inference, 

AMP and UAMP

UAMP applications:

Chapter 4: UAMP for Sparse Bayesian Learning 

Chapter 5: UAMP for Bilinear Recovery

Figure 1.1: Summary diagram of the connections of sections in the thesis.

achieve robust bilinear recovery, conventional non-message passing based algorithms and

message passing based algorithms are discussed. In Chapter 3, to provide a comprehen-

sive insight of UAMP, a brief introduction of variational inference and AMP algorithm is

given. Then, two versions of UAMP algorithm are described. The analysis of empirical

state evolution used to predict the performance of UAMP are also detailed. In Chapter

4, a low-complexity and high-robust algorithm for sparse Bayesian learning is developed.

Firstly, the SBL algorithm is briefly introduced. Then the UAMP-SBL algorithm is pro-

posed, which is followed by the investigation of the SE-based performance prediction.

After that, the impact of shape parameter is analyzed and the extended MMV settings

are described. Numerical results are then given with corresponding performance discus-

sion. In Chapter 5, the Bi-UAMP algorithm is designed and introduced. The extension

for MMV problems and investigation of the algorithm properties are given. Experimental

results and comparison discussion with other state-of-the-art message passing and non-

message passing algorithms are also provided. The thesis is concluded in Chapter 6 and

several inspiring future works are given too.

In this thesis, boldface lowercase and uppercase letters apply to represent column vec-

tors and matrices, respectively. The superscript (·)H represents the conjugate transpose

for a complex matrix, and the transpose for a real matrix. The notation N(x|µ,Σ) de-

notes a Gaussian distribution of x with mean µ and covariance Σ, and Ga(γ|ϵ, η) is a

Gamma distribution with shape parameter ϵ and rate parameter η. Notation ⊗ represents

the Kronecker product. The relation f (x) = cg(x) for some positive constant c is written

as f (x) ∝ g(x). The notation ⟨ f (x)⟩q(x) denotes the expectation of f (x) with respect to

probability density function q(x), and E[·] is the expectation over all random variables
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involved in the brackets. Diag(a) is used to represent a diagonal matrix with elements of

a on its diagonal, Zm,n is the (m, n)th element of Z, and an is the nth element of vector

a. (B)D returns a diagonal matrix by forcing the off-diagonal elements of B to zero. The

element-wise product and division of two vectors a and b are denoted by a · b and a./b,

respectively. The superscript of at in an iterative algorithm denotes the tth iteration. The

notation a.−1 denotes the element-wise inverse operation to vector a. |A|2 is used to de-

note element-wise magnitude squared operation for A, and use ||a||2 to denote the squared

l2 norm of a. The notation < a > denotes the average operation for a, i.e., the sum of

the elements of a divided by its length. The notation
∫

c∨cn
fc(c) represents integral over

all elements in c except cn. 1 and 0 is used to denote an all-one vector and an all-zero

vector with a proper length, respectively. Sometimes, a subscript n for 1, i.e., 1n is used

to indicate its length n.



Chapter 2

Literature Review

2.1 Approximate Message Passing

Approximate message passing is an efficient approach to the estimation of signal vector x

in the following model

y = Ax + w, (2.1)

where y is a measurement vector of length M and the measurement matrix A has a size

of M ×N. w denotes a Gaussian noise vector with mean zero and covariance matrix β−1I,

and β is the precision of the noise. It is assumed that the elements of x are i.i.d, i.e.,

p(x) =
∏

n p(xn).

Originally, based on loopy belief propagation (BP) [30], AMP algorithms are proposed

for the problem of compressed sensing. The advantages of AMP algorithms help to fa-

cilitate its utilise in the case of a large independent and identically distributed (i.i.d.)

(sub-)Gaussian matrix A [31]. Firstly, AMP has a lower complexity than convex op-

timization based algorithms such as LASSO [32] and greedy algorithms such as iter-

ative hard-thresholding [33]. Then, its per-iteration behavior is rigorously character-

ized via the state evolution (SE) and the SE equation converges to a fixed point which

is unique. Thus, AMP is Bayes-optimal [34]. In [15] and [35], AMP was extended

for addressing general estimation problems with a generalized linear observation model.

A significant reduction in computational complexity can be achieved by implementing

8
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the E-step with AMP in the expectation maximization based SBL method. Based on

the original AMP, a generalized AMP (GAMP) algorithm was proposed in [15]. The

GAMP was used to accommodate more general distribution p(yi|(Ax)i) which may not

be Gaussian (where yi and (Ax)i denote the i-th element in y and (Ax), respectively).

The densities p(x) and p(y|Ax) can be used to compute the maximum a posterior estimate

x̂MAP = arg minx p(x|y) in its max-sum mode, or approximate the minimum mean-squared

error estimate x̂MMS E =
∫

xp(x|y)dx = E(x|y) in its sum-product mode [8].

However, AMP cannot work well for a generic matrix such as non-zero mean, rank-

deficient, correlated, or ill-conditioned matrix A [20], resulting in divergence and poor

performance. Many variants to AMP have been proposed to address the divergence issue

and achieve better robustness to a generic A, such as the damped AMP [20], swept AMP

[36] and GAMP with adaptive damping [37]. The swept AMP replaces parallel variable

updated in the GAMP algorithm with serial ones to enhance convergence. However, it is

relatively slow and still diverges for certain matrix A. The same issue also happens in the

work of GAMP with adaptive damping.

More effective variants include UAMP [25] proposed in 2015, vector AMP [21] (VAMP)

in 2016, orthogonal AMP (OAMP) [29] in 2016, memory AMP (MAMP) [38] in 2020,

convolutional AMP (CAMP) [39] in 2020 and so on. In detail, OAMP was proposed in

[29] for general unitarily-invariant matrices, including independent identically distributed

Gaussian matrices and partial orthogonal matrices [29]. OAMP involves two local pro-

cessors which are a linear estimator and a non-linear estimator under certain orthogonality

constraints, i.e., the input and output estimation errors of each processor are orthogonal.

OAMP is related to a variant of the expectation propagation algorithm [40]. In OAMP,

the Onsager term in AMP vanishes as a result of the divergence-free constraint on non-

linear estimator [29]. VAMP is equivalent to OAMP and is also regarded as an exact large

system approximation of EP. Although they can solve the divergence problem, they only

handle right-orthogonally invariant matrices A. However, in most practical applications,

matrices used are not belonged to the family of right-orthogonally invariant matrices, such

as non-zero mean matrices. Then, VAMP based algorithms consist of an LMMSE esti-

mator and an MMSE denoiser, and two explicit EP operations are carried out between the
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iterations of the two modules. The two explicit EP operations cause the computations of

“extrinsic” precisions. As the LMMSE estimator requires cubic complexity per iteration,

which can be very prohibitive in applications with large-scale matrices, the LMMSE esti-

mator is implemented with the aid of SVD. The explicit computations of two “extrinsic”

precisions are required. A problem is that the two gamma parameters can become nega-

tive in the iteration, however, these gamma parameters are essentially precisions and they

should be positive. Although some remedies have been proposed, e.g., simply taking the

absolute value of the calculated gamma, the treatments are heuristic without theoretical

support. In contrast, there is no such problem in UAMP. In particular, UAMP was derived

based on a unitary transform of model (1.1), and it converges for any matrix A in the case

of Gaussian prior [25]. This can be proved in a later chapter that Bi-UAMP performs sig-

nificantly better and is much faster than BAd-VAMP and PC-VAMP for difficult matrices.

In other words, UAMP can outperform VAMP in terms of bilinear recovery.

CAMP improves AMP by replacing the Onsager correction term by a convolution of

all preceding messages [39]. However, CAMP does not work well for matrix A with

high condition numbers [41], resulting in divergence. To solve the convergence issue in

CAMP with high condition numbers [41], memory AMP has been proposed in [38]. In

addition, CAMP has a relatively low convergence speed and for some matrices it may fail

to converge. Thus, damping factor is used to improve the convergence. Unfortunately, the

damping is performed on the non-linear estimator outputs, which breaks the asymptotic

Gaussianity of estimation error [42].

Moreover, the CAMP suffers from the problem of a low convergence speed. What

is worse, for matrices with high condition numbers, CAMP may fail to converge [38].

In addition of that, the heuristic damping used to improve the convergence of CAMP is

performed on the a-posteriori outputs. This can break orthogonality and the asymptotic

Gaussianity of estimation errors. As an improvement of CAMP, relaxation parameters

and a damping vector are analytically optimized in MAMP based on state evolution. The

damping vector used here can preserve the orthogonality and hence the convergence of

MAMP is guaranteed and improved. However, CAMP and MAMP algorithms were mo-

tivated by SE analysis for right-rotationally invariant sensing matrices. Actually, it is
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hard to find right-rotationally invariant matrices in practical engineering applications. For

other matrices which are not right-rotationally invariant, e.g. non-zero mean matrix, it is

easy for CAMP and MAMP to diverge. Compared with them, damping is not required in

UAMP to converge on various difficult matrices. Thus, UAMP is more robust and faster

than these state-of-the-art algorithms.

2.2 Sparse Bayesian Learning Algorithm

Consider recovering a length-N sparse vector x from measurements

y = Ax + w, (2.2)

where y is a measurement vector of length M, the measurement matrix A has size M ×N,

and x is a length-N sparse vector to be recovered. w denotes a Gaussian noise vector with

mean zero mean and covariance matrix β−1I.

To obtain the sparsest solution of the above equation, one can obtain a sparse estimation

of x via Bayesian approaches. A popular method is the SBL. SBL was first proposed in

2001 [6], and it was adapted to be used for sparse signal recover in 2004 [7]. Hereby

we give a detailed introduction of SBL. Essentially, SBL is a type II Bayesian approach.

In SBL, the prior is a Gaussian scale mixture (GSM) [43, 44] on x and it is Gaussian

conditioned on a precision vector γ. The prior of xn is shown:

p(xn) =
∫
N(xn|0, γ−1

n )p(γn)dγn, (2.3)

where the precision vector γ = [γ1, γ2, ..., γN]H.

The EM-based SBL approach in [6] is used for sparse signal recovery in [7]. It has

two steps in each iteration: the E-step and M-step. In the E-step, the a posterior prob-

ability p(x|y, γ̂) is computed, where γ̂ = [γ̂1, ..., γ̂N]T is the learned precision vector in

the last iteration and y is a measurement vector. The a posterior probability turns out to

be Gaussian, i.e., p(x|y, γ̂) = N(x|x̂,Z). The M-step is used to update the precisions.

The EM-based SBL algorithm (which is called SBL hereafter) executes the following
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iteration:

Repeat

Z =
(
βAHA + Diag(γ̂)

)−1
(2.4)

x̂ = βZAHy (2.5)

γ̂n = (2ϵ + 1)/(2η + |x̂n|
2 + Zn,n), n = 1, ...,N (2.6)

Until terminated

where Diag(γ̂) is a diagonal matrix, with the elements of γ̂ as its diagonal, and Zn,n de-

notes the (n, n)th element of Z.

Compared with other signal recovery algorithms, such as l0-norm based optimization

and l1-norm based optimization, SBL can provide more information of sparse vector x.

The estimation of x is via its a posterior mean and the accuracy of the estimator is via its a

posterior covariance matrix. However, the EM-based SBL has a high computational com-

plexity of O({M2N}). In detail, the E-step of the SBL algorithm requires a matrix inverse

in (2.4) in each iteration. This results in cubic complexity in each iteration, which can be

prohibitive for large scale problems. Due to the high complexity of the SBL, it is limited

to imposing GSM priors. To address this issue, the implementation of the E-step using

AMP has been explored in some works. GGAMP was used in [8] to implement the E-

step, where sufficient damping is used to enhance the robustness of the algorithm against

difficult measurement matrices. This leads to the GGAMP-SBL algorithm, of which the

complexity is significantly lower than that of the conventional SBL algorithm. However,

the use of damping slows the convergence of the algorithm. Furthermore, it is observed

that GGAMP-SBL still exhibits significant performance loss in the case of measurement

matrices with relatively high correlation, condition number, or non-zero mean. In this

thesis, the challenging problem of high complexity of the SBL is successfully solved by

adopting UAMP and a much more robust and efficient solution is proposed.
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2.3 Bilinear Recovery

In this section, we consider the following bilinear problem

Y =
K∑

k=1

bkAkC +W, (2.7)

where Y denotes measurements and matrices {Ak} are known. {bk} and C are to be re-

covered. W represents white Gaussian noise. When Y, C and W are replaced with the

corresponding vectors y, c and w, respectively, the above MMV problem is reduced to a

SMV problem. Model (2.7) covers a variety of problems, e.g., compressed sensing with

matrix uncertainty [11], joint channel estimation and detection [45], self-calibration and

blind deconvolution [10], and structured dictionary learning [9]. Specifically when c is

sparse, the problem is known as compressed sensing with matrix uncertainty [11]. An-

other example is that when Y = Ac +W with sparse c and structured A =
∑

k bkAk, the

problem of estimating c and A is known as structured dictionary learning [9]. This model

is also applicable to self-calibration and other circumstances.

There has been extensive research on this active field in the past few years, including the

non-message passing methods and message passing methods. For non-message passing

based algorithms, the performance of the Weighted and Structured Sparsity Cognizant

Total Least Squares (WSS-TLS) from the award-winning paper [11] was significantly

worse than the AMP approaches. Recently, motivated by the AMP algorithm, extension

of the AMP to handle bilinear problem has been considered. The GAMP algorithm [15]

was extended to bilinear GAMP (BiGAMP) [16] for solving a general bilinear problem.

The parametric BiGAMP (P-BiGAMP) was then proposed in [17], which works with

model (2.7) to jointly recover {bk} and C. The BiGAMP algorithm is a special case of

the P-BiGAMP algorithm. However, the evidence in [22] indicated that, like AMP, the

P-BiGAMP algorithm is sensitive to deviations from the i.i.d. assumptions used in its

derivation and analysis [17]. More recently, AMP methods for bilinear inference were

proposed using the “lifting” approach [10, 19]. Lifted AMP was proposed in [18]. A

rigorous analysis of “lifted AMP” was presented in [46]. However, lifted AMP inherits all

the AMP-related convergence issues. That is, these AMP based algorithms are vulnerable
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to difficult A matrices, e.g., ill-conditioned, correlated, rank-deficient or non-zero mean

matrices as AMP can easily diverge in these cases [21].

The problem with AMP is that its behavior is understood only in the case of large

or infinitely large, i.i.d. (sub) Gaussian A [34, 47]. Even the small deviation of the

measurement matrices A from the i.i.d. zero mean Gaussian matrix can cause AMP to

diverge. Most recently, to address this issue and accommodate a larger class of matrices

A, many works have been done to extend VAMP [21] to deal with the bilinear recovery

problem [14, 22]. The lifted VAMP was proposed in [22]. However, the computational

complexity of lifted VAMP is high since the number of unknowns increases significantly,

especially when the number of original variables is large [48]. To address this issue,

the bilinear adaptive VAMP (BAd-VAMP) was proposed in [14], which also inherits the

robustness of VAMP. It was shown that the BAd-VAMP algorithm is more robust and

faster, and it can outperform lifted VAMP significantly [14]. Based on VAMP, PC-VAMP

was proposed in [23] to achieve compressed sensing with structured matrix perturbation.

In [48], BAd-VAMP was extended to incorporate arbitrary distributions on the output

transform based on the framework in [35]. In BAd-VAMP, c is reconstructed by using

the expectation-maximization algorithm. Then, b is reconstructed by implementing the

VAMP algorithm to find the minimum mean-squared error estimate of b. However, due

to the use of the EM algorithm, BAd-VAMP cannot apply to general priors on b. These

variants to VAMP also inherit the instability of VAMP algorithm. VAMP involves the

computations of two gamma parameters (“extrinsic” precision), these gamma parameters

are essentially precisions and they should be positive. However, in some cases, they

become negative in the iteration, especially in BAd-VAMP. This can also potentially lead

to the instability of VAMP algorithm in the case of tough measurement matrix or some

special priors.



Chapter 3

Variational Inference, AMP and UAMP

Algorithms

3.1 Introduction

Consider recovering an unknown vector x from measurements

y = Ax + w (3.1)

where y is a measurement, A is a known M × N measurement matrix and w is a white

Gaussian noise vector with distribution N(w; 0, β−1I). The unknown vector x which has

a known prior density p(x) and hence all the prior knowledge about x is assumed to be

known. The approximate a posterior mean of x is used to serve as an estimate for x in

the sense of minimum mean squared error. However, it is generally intractable for large

scale problems. Thus, we resort to the variational inference (VI) which is one of the

approximate inference techniques.

Variational techniques have been used for decades in quantum and statistical physics,

where they are referred to as the mean field (MF) approximation [49]. Later, they found

their way to the area of machine learning or statistical inference [50, 51]. The central idea

of VI is to approximate the model posterior by a simpler distribution. To this end, one

minimizes the Kullback-Leibler (KL) divergence between the posterior and the approx-

imating distribution, which can be done in an iterative way. Instead of using fully fac-

15
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torized trial functions where all variables are assumed to be independent (thereby likely

resulting in poor approximations), more structured factorizations can be used. To develop

a practical approximate inference algorithm, we follow the framework of structured vari-

ational inference (SVI). It is worth mentioning that SVI [52–54] has been formulated as

nicely in terms of message passing in factor graphs, i.e., structured variational message

passing (SVMP) [53].

The approximate message passing algorithm was developed based on the loopy BP for

compressed sensing with model (3.1) [55]. AMP enjoys low complexity and its perfor-

mance can be rigorously characterized by a scalar state evolution in the case of large i.i.d.

(sub-)Gaussian A [31]. However, for a generic A, the convergence of AMP cannot be

guaranteed, e.g., AMP can easily diverge for non-zero mean, rank-deficient, correlated,

or ill-conditioned matrix A [15].

In this chapter, a new variant of AMP based on a unitary transformation of the original

model (hence the variant is called UTAMP or UAMP) is introduced, where the unitary

matrix is available for any matrix A. Two versions of UAMP are represented. The differ-

ence between these two versions is two approximations, leading to matrix-vector products

reducing from 4 to 2. This is very significant as the complexity of AMP-like algorithms is

dominated by matrix-vector products. Interestingly, the two approximations also enhance

the robustness of the algorithm.

In this chapter, how to employ the empirical SE to predict the performance for UAMP

is introduced. The SE equation derived is with a high efficiency while the presentation is

not complicated to understand. Since the UAMP-SBL is treated as UAMP with a special

denoiser, it is also shown that the performance prediction of UAMP-SBL can be done by

using the empirical SE of UAMP.

3.1.1 Chapter’s Organization

The organization of the chapter is as follows. In section 3.2, a brief overview of the

variational inference is given. In section 3.3, the definitions of the AMP algorithm are

presented. In Section 3.4, the UAMP algorithm and its two versions are introduced. Em-

pirical state evolution to predict the performance of UAMP algorithm is proposed.
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3.2 Variational Inference

Variational inference, which has been widely used in Bayesian problems and especially

for approximating posterior distributions, is defined as a type of machine learning algo-

rithm for approximate inference [50, 52, 54].

Generally, when the posterior probability p(x|y) of a set of variables x = {x1, x2, ..., xm}

conditioned on y is to be computed, a set of observed variables y = {y1, y2, ..., yn} are

always given as known information. The posterior distribution is:

p(x|y) =
p(x, y)
p(y)

(3.2)

To approximate the conditional distribution p(x|y), a surrogate distribution from a sim-

pler family q(x) is proposed. Inference on q(x) will be much easier than on p(x|y) if a

computationally friendly family of distribution is adopted.

In variational inference, by minimizing the KL divergence [56] to the true posterior

function, a selected tractable trial distribution function can be optimized. The KL-divergence

measures the differences between two probability distributions

KL(P(x)||Q(x)) = −
∫

P(x) log
Q(x)
P(x)

dx. (3.3)

The KL-divergence is non-negative, while when the two distributions are identical it

will be equal to zero.

Variational inference selects the surrogate model by minimizing the KL-divergence:

q̃(x) = arg max
q
KL

(
q(x)||p(x|y)

)
, (3.4)

where KL
(
q(x)||p(x|y)

)
denotes the KL divergence from p to q, i.e.,

KL
(
q(x)||p(x|y)

)
= −

∫
q(x) log

p(x|y)
q(x)

dx. (3.5)
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Substitute p(x|y) into (3.5), the KL divergence is obtained as below:

KL
(
q(x)||p(x|y)

)
=

∫
q(x) log q(x)dx −

∫
q(x) log p(x|y)dx

= Eq(x)[log q(x)] − Eq(x)[log p(x, y)] + log p(y) (3.6)

where log p(y) can be treated as a constant since it does not depend on q. This leads to an

optimization problem over the evidence lower bound (ELBO).

ELBO(q) = Eq(x)[log p(x, y)] − Eq(x)[log q(x)] (3.7)

Minimizing the KL-divergence is equivalent to maximizing the ELBO. However, (3.6)

is still difficult to compute directly for large scale problem. To overcome this, q needs to

be constrained in a certain family of distribution. The mean field approximation has been

used as one of the suitable family [57]. The surrogate distribution q(x) is assumed to be

a product of independent single variable factors in mean field approximation. Unfortu-

nately, a poor approximation will be yielded when the target distribution is multi-modal

or otherwise has more complicated correlations in mean field approximation.

Instead of using fully factorized trial functions where all variables are assumed to be

independent, more structured factorizations can be used, leading to structured variational

inference algorithms. With graphical models, SVI algorithms can be formulated as mes-

sage passing [52–54], which is termed as structured variational message passing. In this

thesis, SVMP is adopted and applied with the UAMP algorithm. It will be shown how

UAMP can be used to handle the most computational intensive part of message computa-

tions, enabling the algorithm to achieve a low complexity and a high robustness.

3.3 AMP algorithm

The AMP algorithm is applied in compressed sensing to estimate an unknown vector x

from linear measurement y obtained from (3.1) using separable denoiser η [55]. It means

to act coordinate-wise when applied to a vector. Starting with x0 = 0, an all-zero vector,
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AMP iterates as follows:

xt+1 = η(AHzt + xt) (3.8)

zt = y − Axt + zt−1 1
δ

〈
η′(AHzt−1 + xt−1)

〉
, (3.9)

where η′ denotes the derivative of η and AH denotes the transpose of A. δ = M
N . Under

the assumption that A has i.i.d. sub-Gaussian entries, x has i.i.d. entries according to a

probability distribution px. The last term of the equation (3.9) is referred to as the Onsager

term [34].

In [34], the authors provide a heuristic deviation of AMP from the message passing

algorithm which includes the following two iterative equations,

zt
a→i = ya −

∑
j∈[n]\i

Aa jxt
j→a, (3.10)

xt+1
i→a = η

 ∑
j∈[n]\a

Aa jzt
j→a

 , (3.11)

where subscript a → i in (3.10) represents the message from the factor node (contains

information of observation) a to the variable node which contains information of signals.

In (3.11), the subscript i → a represents the message from the variable node i to the

factor node a. The subscript [n] \ i denotes the set of [n] but without element i. A

direct calculation of MP based on (3.10) and (3.11) will not be practical especially for

large dimension systems as it requires to update MN messages per iteration [55]. The

computational complexity of MP is extremely high. On the other hand, it is easy to see

that the right-hand side of (3.10) depends weakly on the index i and that the right-hand

side of (3.11) depends weakly on a. A more careful analysis of this dependence leads

to corrections of order one in the high-dimensional limit. Such corrections are however

fully captured by the last term on the right hand side of (3.9), thus leading to the AMP

algorithm [58].

The behavior of the AMP algorithms is predicted by a deterministic scalar recursion

referred to as state evolution [30]. More specifically, with the initial condition τ2
0 = β

−1 +
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Algorithm 1 Vector Stepsize AMP
Initialize τ(0)

x > 0 (with elements larger than 0) and x(0). Set s(−1) = 0 and t = 0.
Repeat

1: τp = |A|2τt
x

2: p = Axt − τp · st−1

3: τs = 1./(τp + β
−11)

4: st = τs · (y − p)
5: 1./τq = |AH |2τs

6: q = xt + τq · AHst

7: τt+1
x = τq · g′x(q, τq)

8: xt+1 = gx(q, τq)
9: t = t + 1

Until terminated

N
M v2

0, the state of evolution includes two equations when t ≥ 1:

τ2
t = β

−1 +
N
M

v2
t (3.12)

v2
t+1 = E[(η(x + τtz])2] (3.13)

where x ∼ px is independent of z ∼ N(0, 1). The correctness of SE has been rigorously

proved in [34]. The fixed points of state evolution describe the output of the correspond-

ing AMP, when the latter is used for a sufficiently large number of iterations [30]. It

is well known, within statistical mechanics, that the fixed point equations coincide with

the equations obtained through a completely different non-rigorous approach, the replica

method [59, 60].

3.4 UAMP algorithm

The UAMP algorithm, inspired by [24], was derived based on the vector stepsize AMP

algorithm shown in Algorithm 1 and a unitary transform of model (3.1) [25]. In vec-

tor stepsize AMP and UAMP, the function gx(q, τq) returns a column vector whose n-th

element, denoted as [gx(q, τq)]n, is given by

[gx(q, τq)]n =

∫
xn p(xn)N(xn|qn, τqn)dxn∫
p(xn)N(xn|qn, τqn)dxn

. (3.14)
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Algorithm 2 UAMP Version 1
Unitary transform: r = UHy = Φx + ω, where Φ = UHA = ΛV, and U is obtained from
the SVD A = UΛV.
Initialize τ(0)

x > 0 and x(0). Set s(−1) = 0 and t = 0.
Repeat

1: τp = |Φ|
2τt

x
2: p = Φxt − τp · st−1

3: τs = 1./(τp + β
−11)

4: st = τs · (r − p)
5: 1./τq = |Φ

H |2τs

6: q = xt + τq · (ΦHst)
7: τt+1

x = τq · g′x(q, τq)
8: xt+1 = gx(q, τq)
9: t = t + 1

Until terminated

Equation (3.14) can be interpreted as the minimum mean square error (MMSE) estimation

of xn based on the following model

qn = xn +ϖ (3.15)

where ϖ is a Gaussian noise with mean zero and variance τqn .

The function g′x(q, τq) returns a column vector and the n-th element is denoted by

[g′x(q, τq)]n, where the derivative is with respect to qn. It is not hard to show that τqn[g
′
x(q, τq)]n

is the a posterior variance of xn with model (3.15). Note that gx(q, τq) can also be changed

for maximum a posterior estimation of x.

The derivation of UAMP is briefly introduced in the following. As any matrix A can

have its singular value decomposition (SVD) A = UΛV, a unitary transformation with

UH to (3.1) can be performed, yielding

r = ΛVx + ω (3.16)

where r = UHy, ω = UHw is still a zero-mean Gaussian noise vector with the same

covariance matrix β−1I and Λ is an M × N rectangular diagonal matrix. Then the vector

stepsize AMP can be applided to equation (3.16) where the system matrix becomes a

special matrix ΛV. Applying the vector step size AMP leads to the second version of
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Algorithm 3 UAMP version 2
Unitary transform: r = UHy = Φx + ω, where Φ = UHA = ΛV, and U is obtained from
the SVD A = UΛV.
Define vector λ = ΛΛH1.
Initialize τ(0)

x > 0 and x(0). Set s(−1) = 0 and t = 0.
Repeat

1: τp = τ
t
xλ

2: p = Φxt − τp · st−1

3: τs = 1./(τp + β
−11)

4: st = τs · (r − p)
5: 1/τq = (1/N)λTτs

6: q = xt + τqΦ
Hst

7: τt+1
x = (τq/N)1Hg′x(q, τq)

8: xt+1 = gx(q, τq)
9: t = t + 1

Until terminated

UAMP, which is given as Algorithm 3. Unless specifically stated otherwise, UAMP

refers to the second version.

It is not hard to verify that

|C|2d = (CDiag(d)CH)D1. (3.17)

Now suppose we have a variance vector τt
x. According to Line 1 in the vector stepsize

AMP and using (3.17), we have

τp = (ΛVDiag(τt
x)V

HΛH)D1. (3.18)

We can find that if Diag(τt
x) is a scaled identity matrix, the computation of (3.18) can

be significantly simplified. This motivates the replacement of τt
x with τt

x1 where τt
x is the

average of the elements of τt
x. Hence (3.18) is reduced to

τp = τ
t
xΛΛ

H1 (3.19)

which is Line 1 of Algorithm 3. Lines 2, 3 and 4 of Algorithm 3 can be obtained

according to Lines 2, 3 and 4 of the vector stepsize AMP by simply replacing A with

ΛV. According to (3.17) again, Line 5 of the vector stepsize AMP with matrix ΛV can
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be represented as

1./τq = (VHΛHDiag(τs)ΛV)D1. (3.20)

We then replace the diagonal matrix ΛHDiag(τs)Λ with a scaled identity matrix βI

where β is the average of the diagonal elements of ΛHDiag(τs)Λ, i.e.,

β = (1/N)1HΛΛHτs. (3.21)

Hence (3.20) is reduced to Line 5 of the Algorithm 3 algorithm. Line 6 can be obtained

from Line 6 of the vector stepsize AMP by replacing A = UΛV with ΛV. Compared with

Line 7 in the vector stepsize AMP, an additional average operation is performed in Line 7

in Algorithm 3 to meet the requirement of a scalar τt
x in Line 1. We note that the average

operation is not necessarily in Line 7 as we can also put the additional average operation

in Line 1. Line 8 in Algorithm 3 is the same as Line 8 of the vector stepsize AMP except

that τq is a scalar.

Remarks: It is worth pointing out that UAMP is not equivalent to the vector step size

AMP due to the approximations made in the derivation. Interestingly, it is these approxi-

mations that make UAMP much more robust than AMP.

As discussed in [25], applying an average operation to the two vectors τx in Line 7 and

|ΦH |2τs in Line 5 in Algorithm 2 leads to the UAMP shown in Algorithm 3. Specifically,

due to the average operation in Line 7 of Algorithm 2, τt
x in Line 1 turns into a scaled

all-one vector τt
x1. With Φ = ΛV and noting that V is a unitary matrix, it is not hard to

show that

τp = |Φ|
2(τt

x1)

= τt
xλ, (3.22)

which is Line 1 of Algorithm 3. Performing the average operation to vector |ΦH |2τs, i.e.,

< |ΦH |2τs >=
1
N
λTτs (3.23)

leads to Line 5 of Algorithm 3. It is worth highlighting that the two average operations
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Figure 3.1: Performance and complexity comparisons of two versions of under
ill-conditioned matrices in SNR = 60dB.

result in a significant reduction in computational complexity. Comparing Algorithm 2

with Algorithm 3, Line 1 and Line 5 of Algorithm 3 do not involve matrix-vector product

operations, i.e., the number of matrix-vector products is reduced from 4 to 2 per iteration,

which is a significant reduction as the complexity of AMP-like algorithms is dominated

by matrix-vector products. Interestingly, the average operations also further enhance the

stability of the algorithm from our finding. UAMP version 2 converges for any matrix A

in the case of Gaussian priors [25]. In many cases, the noise precision β is unknown. The

noise precision estimation can be incorporated into the UAMP algorithms as in [61].

The performance of the two versions of UAMP in SBL is compared. We compute the

support-oracle bound on the achievable MSE based on the assumption that the support of

x is known. The results are shown in Figure 3.1 in SNR = 60dB, where UAMP version

1 represents UAMP-SBL with UAMP version 1 and UAMP version 2 represents UAMP-

SBL with UAMP version 2. It can be seen that when the condition number is small,

UAMP version 1 performs slightly better than UAMP version 2, but UAMP version 2

performs better than UAMP version 1 when the conditional number is large (i.e., UAMP

version 2 is more robust). Moreover, UAMP version 2 is also faster than UAMP version

1 due to the less number of matrix-vector products. UAMP-SBL with UAMP version 1

is also implemented, where no averaging operation is used, and UAMP-SBL with UAMP
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Figure 3.2: Performance and complexity comparisons of two versions under
ill-conditioned matrices in SNR = 35dB.

version 2, where averaging operation is used. Their performance and the results shown in

Figure 3.2 are also compared in SNR = 35dB. One is when the measurement matrix is not

very tough, UAMP-SBL with UAMP version 1 performs better than UAMP-SBL with

UAMP-version 2, which is due to the impact of averaging operation in UAMP version 2.

The other is when the measurement matrices become tougher, UAMP-SBL with UAMP

version 2 performs better than UAMP-SBL with UAMP version 1. This is because UAMP

version 2 is more robust then UAMP version 1 based on our findings (It is shown in [25]

that UAMP version 2 is guaranteed to converge for any matrix A in the case of Gaussian

prior).

3.4.1 SE-Based Performance Prediction

As (U)AMP decouples the estimation of vector x, in the tth iteration, the following pseudo

observation model is

qt
n = xn + wt

n, (3.24)
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Figure 3.3: Performance of UAMP and its SE with a Bernoulli Gaussian prior for
low-rank matrices (left) and non-zero mean matrices (right).

where qt
n is the nth element of q in the tth iteration, and wt

n denotes a Gaussian noise with

mean 0. The variance of wt
n denoted by τt is given by

τt =
N

1H(
λ./(vt

xλ + β
−11)

) , (3.25)

which can be simply obtained based on Lines 1, 5 and 7 of UAMP version2. Here vt
x is

the average MSE of {xn} after denoising in the tth iteration. As it is difficult to obtain a

closed form for the average MSE, the denoiser with the additive Gaussian noise model

(3.24) by varying the variance of noise τt (or the SNR) is simulated, so that a “function”

in terms of a table is obtained, with the variance of the noise as the input and the MSE as

the output, i.e.,

vx = ϕ(τ). (3.26)

The performance of UAMP can be characterized by the following simple recursion

τt =
N

1T (λ./(vt
xλ + β

−11)
) (3.27)

vt+1
x = E

[∣∣∣gx(x +
√
τtz, τt) − x

∣∣∣2] (3.28)

where β−1 is the noise variance, z is Gaussian with distributionN(z; 0, 1) and x has a prior
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p(x).

To demonstrate the SE of UAMP, the measurement matrix has a size of M = 800

and N = 1000 is assumed, the prior of the elements of x is Bernoulli Gaussian p(x) =

0.9δ(x) + 0.1N(x; 0, 1), and the signal to noise ratio (SNR) is 50 dB. The non-zero mean

matrices A with elements independently drawn from N(1, 1) is generated, and low rank

matrices A = BC, where the size of B and C are 800 × 500 and 500 × 1000, respectively.

Both B and C are i.i.d. Gaussian matrices with zero mean and unit variance. The mean

squared error (MSE) of UAMP and its SE are shown in Figure 3.3. We compute the

support-oracle bound on the achievable MSE based on the assumption that the support

of x is known. It can be seen that in Figure 3.3 the SE matches well the simulation

performance.

3.5 Conclusion

In this chapter, to facilitate comparisons with UAMP, a brief introduction of variational

inference and AMP algorithm is given. The derivation of UAMP is provide which is

more robust than AMP. Then, two versions of UAMP algorithm are described. Finally,

the derivation and analysis of empirical state evolution used to predict the performance of

UAMP are also detailed.



Chapter 4

UAMP for Sparse Bayesian Learning

4.1 Introduction

The problem of recovering a sparse signal x from noisy measurements y = Ax + w,

where A is a known measurement matrix [62] is considered. This problem finds numerous

applications in various areas of signal processing, statistics and computer science [62],

[63], [64], [65], [66], [67], [68]. One approach to recovering x is to use sparse Bayesian

learning (SBL), where x is assumed to have a sparsity-promoting prior [6]. Conventional

implementation of SBL involves matrix inversion in each iteration, resulting in prohibitive

computational complexity for large scale problems.

The approximate message passing (AMP) algorithm [69], [30] has been proposed for

low-complexity implementation of SBL [70, 71]. However, AMP does not work well for a

generic matrix such as non-zero mean, rank-deficient, correlated, or ill-conditioned matrix

A [20], resulting in divergence and poor performance. In [8], by incorporating damped

Gaussian generalized AMP (GGAMP) to the EM-based SBL method, a GGAMP-SBL al-

gorithm was proposed. Although the robustness of the approach is significantly improved,

it comes at the cost of slowing the convergence. In addition, the algorithm still exhibits

significant performance gap from the support-oracle bound when the measurement matrix

has relatively high correlation, large condition number or non-zero mean.

To develop UAMP-SBL, we apply structured variational inference (SVI) [50], [52],

[54]. In particular, the formulated problem is represented by a factor graph model, based

28
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on which approximate inference is implemented in terms of structured variational mes-

sage passing (SVMP) [52], [53], [54]. The use of SVMP allows the incorporation of

UAMP to the message passing algorithm to handle the most computational intensive part

of message computations with high robustness and low complexity. In UAMP-SBL, a

Gamma distribution is used as the hyperprior for the precisions of the elements of x.

We propose to tune the shape parameter of the Gamma distribution automatically dur-

ing iterations. We show by simulations that, in many cases with a generic measurement

matrix, UAMP-SBL can still approach the support-oracle bound closely. In addition, the

UAMP-SBL algorithm is extended from SMV problems to MMV [63], [72], [73]. Based

on our preliminary results in [61], we present a new derivation of UAMP-SBL, extend it

from SMV to MMV, and provide theoretical analyses and comprehensive comparisons.

UAMP-SBL was applied to inverse synthetic aperture radar [74], where the measurement

matrix can be highly correlated in order to achieve high Doppler resolution. Real data ex-

periments in [74] demonstrate its superiority in terms of both recovery performance and

speed.

4.1.1 Chapter’s Organization

The organization of the chapter is as follows. In Section 4.2 the SBL algorithm is briefly

reviewed. In Section 4.3, the UAMP algorithm is combined with the SBL algorithm to

solve the SMV problem. the UAMP-SBL algorithm is introduce and the SE-based perfor-

mance prediction for UAMP-SBL is investigate. In Section 4.4, the impact of the shape

parameter is analyzed. In Section 4.5 UAMP-SBL is extended to the MMV setting.In

Section 4.6 numerical results are presented to compare the performance and complexity

of the proposed algorithms with the original SBL and with other AMP algorithms for the

SMV case, and for the MMV case.
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4.2 Sparse Bayesian Learning

Consider recovering a length-N sparse vector x from measurements

y = Ax + w, (4.1)

where y is a measurement vector of length M, the measurement matrix A has size M ×N,

w denotes a Gaussian noise vector with mean zero and covariance matrix β−1I, and β is

the precision of the noise. It is assumed that the elements in x are independent and the

following two-layer sparsity-promoting prior is used

p(x|γ) =
∏

n

p(xn|γn) =
∏

n

N(xn|0, γ−1
n ), (4.2)

p(γ) =
∏

n

p(γn) =
∏

n

Ga(γn|ϵ, η), (4.3)

i.e., the prior of xn is a Gaussian mixture

p(xn) =
∫
N(xn|0, γ−1

n )p(γn)dγn, (4.4)

where the precision vector γ = [γ1, γ2, ..., γN]H.

In the conventional SBL algorithm by Tipping [6], the precision vector γ is learned by

maximizing the a posteriori probability

p(γ|y) ∝ p(y|γ)p(γ), (4.5)

where the marginal likelihood function

p(y|γ) =
∫

p(y|x)p(x|γ)dx. (4.6)

It can be shown that [6]

log p(y|γ)=
1
2
(

log |Σ| + log |Diag(γ)|

− ζHDiag(γ)ζ
)
+ const, (4.7)
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where const represents terms independent of γ, and

Σ =
(
βAHA + Diag(γ)

)−1
, (4.8)

ζ = βΣAHy. (4.9)

The posterior probability of x

p(x|y,γ) = N(x|ζ,Σ). (4.10)

By taking the logarithm of p(γ|y) and ignoring the terms independent of γ, the learning

of γ is to maximize the following objective function [6]

L(γ) = log p(y|γ) +
N∑

n=1

(ϵ log γn − ηγn). (4.11)

As the value of γ that maximizes L(γ) cannot be obtained in a closed form, iterative

re-estimation is employed by taking advantage of (4.7), i.e., with a learned γ in the last

iteration, compute Σ and ζ with (4.8) and (4.9), then update γ by maximizing L(γ) with

(4.7) used, which leads to a closed form to update γn

γn = (2ϵ + 1)/(2η + |ζn|
2 + Σn,n), n = 1, ...,N. (4.12)

In summary, Tipping’s SBL algorithm (which is called SBL hereafter) executes the fol-

lowing iteration [6]:

Repeat

Z =
(
βAHA + Diag(γ̂)

)−1
(4.13)

x̂ = βZAHy (4.14)

γ̂n = (2ϵ + 1)/(2η + |x̂n|
2 + Zn,n), n = 1, ...,N. (4.15)

Until terminated
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If the noise precision β is unknown, its estimation can be incorporated as well. The SBL

algorithm can also be derived based on the EM algorithm [6], [8]. The SBL algorithm

requires a matrix inverse in (4.13) in each iteration, resulting in cubic complexity per

iteration.

4.3 Sparse Bayesian Learning Using UAMP

4.3.1 Problem Formulation and Approximate Inference

To enable the use of UAMP, the unitary transformed model r = Φx + ω in (3.16) is

employed. As in many applications the noise precision β is unknown, its estimation is

also considered. The joint conditional distribution of x, γ and β can be expressed as

p(x,γ, β|r) ∝ p(r|x, β)p(x|γ)p(γ)p(β), (4.16)

where p(x|γ) and p(γ) are given by (4.2) and (4.3), respectively. It is assumed that an

improper prior p(β) ∝ 1/β for the noise precision [6]. According to the transformed model

(3.16), p(r|x, β) = N(r|Φx, β−1I). Our aim is to find the marginal distribution p(x|r).

The a posteriori mean is then used as an estimate of x in the sense of minimum mean

squared error (MSE). However, exact inference is intractable due to the high dimensional

integration involved, so approximate inference techniques is applied to.

Variational inference is a machine learning method for approximate inference [50],

[52], [54]. In variational inference, a tractable trial distribution function is chosen and

optimized by minimizing the Kullback-Leibler (KL) divergence between it and the true

posterior function. Instead of using fully factorized trial functions where all variables

are assumed to be independent (thereby likely resulting in poor approximations), more

structured factorizations can be used, leading to SVI algorithms. With graphical models,

SVI can be formulated as message-passing [52], [54], [53], which is termed SVMP. In

this work, SVMP is adopted because it facilitates the incorporation of UAMP into SVMP.

it will be shown how UAMP can be used to handle the most computational intensive

part of message computations, how to achieve low complexity and high robustness. With
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Figure 4.1: Factor graph of (4.17) for deriving UAMP-SBL.

SVMP, it also can be seen that an approximation to the marginal distribution p(x|r), where

an approximation to p(γ|r) is also involved (the approximate inference for x and γ is

performed alternately).

An auxiliary variable h = Φx to facilitate the incorporation of UAMP is introduced,

which is crucial to an efficient realization of SBL. Then the conditional joint distribution

is

p(x,h,γ, β|r)

∝ p(r|h, β)p(h|x)p(x|γ)p(γ|ϵ)p(β)

=

M∏
m=1

N(rm|hm, β
−1)

M∏
m=1

δ(hm − [Φ]mx)

N∏
n=1

N(xn|0, γ−1
n )

N∏
n=1

Ga(γn|ϵ, η)p(β). (4.17)

To facilitate the derivation of the message passing algorithm, a factor graph representation

of the factorization in (4.17) is shown in Figure4.1, where the local functions fβ(β) ∝ 1/β,

frm(rm, hm, β) = N(rm|hm, β
−1), fδm(hm, x) = δ(hm − [Φ]mx), fxn(xn, γn) = N(xn|0, γ−1

n ),

fγn(γn) = Ga(γn|ϵ, η) and [Φ]m is the mth row of matrix Φ.

Following SVI, the following structured trial function is defined by

q̃(x,h,γ, β) = q̃(β)q̃(x,h)q̃(γ). (4.18)

In terms of SVMP, the use of the above trial function corresponds to a partition of the
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Algorithm 4 UAMP-SBL
Unitary transform: r = UHy = Φx + ω, where Φ = UHA = ΛV, and A has SVD A =
UΛV.
Define vector λ = ΛΛH1.
Initialization: τ(0)

x = 1, x̂(0) = 0, ϵ = 0.001, γ̂ = 1, β̂ = 1, s = 0, and t = 0.
Do

1: τp = τ
t
xλ

2: p = Φx̂t − τp · s
3: vh = τp./(1 + β̂τp)
4: ĥ = (β̂τp · r + p)./(1 + β̂τp)
5: β̂ = M/(||r − ĥ||2 + 1Hvh)
6: τs = 1./(τp + β̂

−11)
7: s = τs · (r − p)
8: 1/τq = (1/N)λHτs

9: q = x̂t + τqΦ
Hs

10: τt+1
x = (τq/N)1H(1./(1 + τqγ̂))

11: x̂t+1 = q./(1 + τqγ̂)
12: γ̂n = (2ϵ + 1)/(|x̂t+1

n |
2 + τt+1

x ), n = 1, ...,N.

13: ϵ = 1
2

√
log( 1

N

∑
n γ̂n) − 1

N

∑
n log γ̂n

14: t = t + 1
while (||x̂t+1 − x̂t||2/||x̂t+1||2 > δx and t < tmax)

factor graph shown by the dotted boxes in Figure 4.1, where q̃(β), q̃(x,h) and q̃(γ) are

associated with Subgraphs 1, 2 and 3, respectively.

As the KL divergence

KL
(
q̃(β)q̃(x,h)q̃(γ)||p(x,h,γ, β|r)

)
, (4.19)

is minimized, it is expected that

q̃(x,h) ≈ p(x,h|r), (4.20)

q̃(γ) ≈ p(γ|r), (4.21)

q̃(β) ≈ p(β|r). (4.22)

Integrating out h in (4.20), which corresponds to running BP in Subgraph 2 (except the

factor nodes connecting external variable nodes), q̃(x) ≈ p(x|r) is obtained. Running

BP in Subgraph 2 involves the most intensive computations; fortunately it can be handled

efficiently and with high robustness using UAMP. The derivation of UAMP-SBL is shown
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in the following, and the algorithm is summarized in Algorithm 4.

Regarding the UAMP-SBL in Algorithm 4, the following remarks is given:

1. UAMPv2 which is shown in chapter 3 is employed in Algorithm 2. Similarly,

UAMPv1 which is also shown in chapter 3 of Algorithm 3 can also be used. By

comparing UAMPv1 and UAMPv2, the differences lie in Lines 1, 8, 9 and 10 as

vectors τt
x and τq need to be used. The UAMP-SBL algorithms with two version of

UAMP deliver comparable performance, but UAMP-SBL with UAMPv2 has lower

complexity.

2. In SBL with Gamma hyperprior, the shape parameter ϵ and the rate parameter η are

normally chosen to be very small values [6], and sometimes the value of the shape

parameter ϵ is chosen empirically, e.g., ϵ = 1 in [75]. In UAMP-SBL, to tune the

shape parameter automatically (as shown in Line 13) with the following empirical

rule is proposed by

ϵ =
1
2

√
log(

1
N

∑
n

γ̂n) −
1
N

∑
n

log γ̂n, (4.23)

i.e., ϵ is learned iteratively with the iteration, starting from a small positive initial

value. It is noted that, as the log function is concave, the parameter ϵ in (4.23)

is guaranteed to be non-negative. In Section 4.4, it will be shown that the shape

parameter ϵ in the SBL algorithms functions as a selective amplifier for {γn}, and

a proper ϵ plays a significant role in promoting sparsity, leading to considerable

performance improvement.

4.3.2 Derivation of UAMP-SBL with SVMP

We detail the forward and backward message passing in each subgraph of the factor graph

in Figure 4.1 according to the principle of SVMP [50], [52], [53]. The notationMna→nb(x)

is used to denote a message passed from node na to node nb, which is a function of x. Note

that, if a forward message computation requires backward messages, we use the messages

in previous iteration by default.
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4.3.2.1 Message Computations in Subgraph 1

In this subgraph, we only need to compute the outgoing (forward) messages {Mβ→ frm
(β)},

which are input to Subgraph 2. The derivation of the message update rule is delayed in

the message computations in Subgraph 2, and is given in (4.34).

4.3.2.2 Message Computations in Subgraph 2

According to SVMP, we need to run BP in this subgraph except at the factor nodes { frm}

as they connect external variable nodes. Due to the involvement of Φ, this is the most

computational intensive part, and we propose to use UAMP to handle it by integrating it

to the message passing process.

According to the derivation of (U)AMP using loopy BP, UAMP provides the message

from variable node hm to function node frm . Due to the Gaussian approximation in the the

derivation of (U)AMP, the message is Gaussian, i.e.,

Mhm→ frm
(hm) =M fδm→hm(hm) = N(hm|pm, τpm), (4.24)

where the mean pm and the variance τpm are respectively the mth elements of p and τp

given in Line 2 and Line 1 of the UAMP algorithm (Algorithm 2), which are also Line 2

and Line 1 of the UAMP-SBL algorithm (Algorithm 4).

Following SVMP [53], the messageM frm→β(β) from factor node frm to variable node β

can be expressed as

M frm→β(β) ∝ exp
{〈

log frm(rm|hm, β
−1)

〉
b(hm)

}
, (4.25)

where the belief of hm is given as

b(hm) ∝ Mhm→ frm
(hm)M frm→hm(hm). (4.26)

Later we will see that M frm→hm(hm) ∝ N(hm|rm, β̂
−1) where β̂−1 is an estimate of β−1

(in the last iteration), and its computation is delayed to (4.36). Hence b(hm) is Gaussian

according to the property of the product of Gaussian functions, i.e., b(hm) = N(hm|ĥm, vhm)
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with

vhm = (1/τpm + β̂)−1 (4.27)

ĥm = vhm(β̂rm + pm/τpm). (4.28)

They can be rewritten in vector form as

vh = τp./(1 + β̂τp) (4.29)

ĥ = (β̂τp · r + p)./(1 + β̂τp), (4.30)

to avoid numerical problems as τp may contain zero elements, which are Lines 3 and 4 of

the UAMP-SBL algorithm. Then, from (4.25) and the Gaussianity of b(hm), the message

M frm→β(β) is

M frm→β(β) ∝
√
β exp

{
−
β

2
(|rm − ĥm|

2 + vhm)
}
. (4.31)

According to SVMP, the message from function node frm to variable node hm is

M frm→hm(hm) ∝ exp
{〈

log frm(rm|hm, β
−1)

〉
b(β)

}
∝ N(hm|rm, β̂

−1),
(4.32)

where β̂ = ⟨β⟩b(β) with

b(β)=Mβ→ frm
(β)M frm→β(β)

= fβ(β)
∏

m

M frm→β(β)

∝β
M
2 −1 exp

−β2 ∑
m

(
|rm − ĥm|

2 + vhm

) , (4.33)

and

Mβ→ frm
(β) = fβ(β)

∏
m′,m

M frm′
→β(β). (4.34)
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It is noted that b(β) is a Gamma distribution with the rate parameter

1
2

∑
m

(
|rm − ĥm|

2 + vhm

)
(4.35)

and the shape parameter M/2, so β̂ = ⟨β⟩b(β) can be computed as

β̂ = M/
∑

m

(
|rm − ĥm|

2 + vhm

)
, (4.36)

which can be rewritten in vector form shown in Line 5 of the UAMP-SBL algorithm.

From (4.32), the Gaussian form of the message M frm→hm(hm) suggests the following

model

rm = hm + wm,m = 1, ...,M, (4.37)

where wm is a Gaussian noise with mean 0 and variance β̂−1. This fits into the forward

recursion of the UAMP algorithm as if the noise variance is known. Therefore, Lines

3 - 6 of the UAMP algorithm (Algorithm 2) can be executed, which are Lines 6 - 9 of

the UAMP-SBL algorithm. According to the derivation of (U)AMP, UAMP produces the

message Mxn→ fxn
(xn) ∝ N(xn|qn, τq) with mean qn and variance τq, which are given in

Lines 5 and 6 of the UAMP algorithm or Line 8 and Line 9 of the UAMP-SBL algorithm.

We can see that the UAMP algorithm is integrated.

The function nodes
{
fxn

}
connect the external variable node γn. According to SVMP,

the outgoing message of Subgraph 2M fxn→γn(γn) can be expressed as

M fxn→γn(γn) ∝ exp
{〈

log fxn(xn|0, γ−1
n )

〉
b(xn)

}
, (4.38)

where the belief b(xn) ∝ Mxn→ fxn
(xn)M fxn→xn(xn).

The message M fxn→xn(xn) ∝ N(xn|0, γ̂−1
n ) will be computed in (4.45), where γ̂n =

⟨γn⟩b(γn). Then b(xn) turns out to be Gaussian, i.e., b(xn) = N(xn|x̂n, τxn) with

τxn =
(
1/τq + γ̂n

)−1
(4.39)

x̂n = qn/(1 + τqγ̂n). (4.40)
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Performing the average operations to {τxn} in (4.39) and arranging (4.40) in a vector form

lead to Lines 10 and 11 of the UAMP-SBL algorithm. According to the above,

M fxn→γn(γn) ∝
√
γn exp

{
−
γn

2
(|x̂n|

2 + τx)
}
, (4.41)

which is passed to Subgraph 3. This is the end of the message update in Subgraph 2.

4.3.2.3 Message Computations in Subgraph 3

The messageM fγn→γn(γn) from the factor node fγn to the variable node γn is a predefined

Gamma distribution with shape parameter ϵ and rate parameter η, i.e.,

M fγn→γn(γn) ∝ γn
ϵ−1 exp {−ηγn} . (4.42)

According to SVMP, the message

M fxn→xn(xn) ∝ exp
{〈

log fx(xn|0, γ−1
n )

〉
b(γn)

}
, (4.43)

where the belief of γn

b(γn) ∝ M fγn→γn(γn)M fxn→γn(γn)

∝ γn
ϵ− 1

2 exp
{
−
γn

2
(|x̂n|

2 + τx + 2η)
}
.

(4.44)

Hence, the message

M fxn→xn(xn) ∝ N(xn|0, γ̂−1
n ), (4.45)

where

γ̂n = ⟨γn⟩b(γn) =
2ϵ + 1

2η + |x̂n|
2 + τx

. (4.46)

Here we set η = 0, and γ̂n is reduced to

(2ϵ + 1)
|x̂n|

2 + τx
, (4.47)

which leads to Line 12 of the UAMP-SBL algorithm.



4.4. IMPACT OF THE SHAPE PARAMETER ϵ IN SBL 40

4.3.3 Computational Complexity

UAMP-SBL works well with a simple single loop iteration, which is in contrast to the

double loop iterative algorithm GGAMP-SBL [8]. The complexity of UAMP-SBL (with

UAMPv2) is dominated by two matrix-vector product operations in Line 2 and Line 9,

i.e., O(MN) per iteration. The algorithm typically converges fast and delivers outstanding

performance as shown in Section 4.6. UAMP-SBL involves an SVD , but it only needs to

be computed once and may be carried out off-line. The complexity of economic SVD is

O(min{M2N,MN2}). Note that for the runtime comparison in Section 4.6, off-line SVD

computation is not been assumed, and the time consumed by SVD is counted for UAMP-

SBL.

4.4 Impact of the Shape Parameter ϵ in SBL

In this section, the impact of the hyperparameter ϵ on the convergence of SBL is analyzed.

the case of an identity matrix A is focused on. The same results for a general A are

demonstrated numerically.

It is considerd that the conventional SBL algorithm (η is set to be zero) [6]. In the case

of identity matrix A, it reduces to

Repeat

Zn,n =
(
β + γt

n
)−1

x̂n = βZn,nyn (4.48)

γt+1
n = (2ϵ + 1)/(|x̂n|

2 + Zn,n)

Until terminated

Here note that in the above iteration γ(0)
n > 0 is initialized. The iteration in terms of γn has
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a closed form

γt+1
n =

2ϵ + 1
(β(β + γt

n)−1yn)2 + (β + γt
n)−1

= (2ϵ + 1)
(β + γt

n)2

(βyn)2 + β + γt
n

(4.49)

≜ gϵ(γt
n).

Next,the impact of ϵ on the convergence behavior and fixed point of the iteration (4.49)

are investigated when ϵ = 0 or ϵ takes a positive value.

For the iteration (4.49) with a small positive initial value γ(0)
n , the following proposition

and theorem is given.

Proposition 1: When ϵ = 0, if βy2
n > 1, γt

n converges to a stable fixed point

γ′n =
β

βy2
n − 1

; (4.50)

if βy2
n ≤ 1, γt

n goes to +∞.

Proof. When ϵ = 0, the iteration in terms of γn has a simplified closed form, i.e.,

γt+1
n = gϵ0(γ

t
n) =

(β + γt
n)2

(βyn)2 + β + γt
n
. (4.51)

In order to find the fixed point, we need to solve the following equation

f (γn) = gϵ0(γn) − γn = 0, (4.52)

which leads to the unique root

γ′n =
β

βy2
n − 1

. (4.53)

If βy2
n > 1, the root γ′n =

β

βy2
n−1 > 0.

Taking the derivative of gϵ0(γn) in (4.51), we have

d
dγn

gϵ0(γn) = 1 −
(

β2y2
n

β2y2
n + β + γn

)2

. (4.54)
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It is easy to verify that, when γn > 0,

0 <
d

dγn
gϵ0(γn) < 1. (4.55)

Thus, the unique root

γ′n =
β

βy2
n − 1

(4.56)

is a stable fixed point of the iteration. when γn > 0,

As 0 < d
dγn

gϵ0(γn) < 1 with an initial value γ(0)
n > 0, γt

n will converge to the stable fixed

point γ′n [76].

If βy2
n ≤ 1, the root

γ′n =
β

βy2
n − 1

< 0 (4.57)

or γ′n = +∞, i.e., there is no cross-point between y = gϵ0(γn) and y = γn when γn > 0. As

gϵ0(0) = β2

(βyn)2+β
> 0, y = gϵ0(γn) is above y = γn for γn > 0. In addition, y = gϵ0(γn) is an

increasing function for γn > 0. Hence γt
n goes to +∞ with the iteration.

□

Theorem 1: When ϵ > 0, if βy2
n > 1 + 4ϵ + 4

√
ϵ2 + ϵ/2, γt

n converges to a stable fixed

point

γn(a) =
2β(1 + 2ϵ)

βy2
n − 4ϵ − 1 +

√
β2y4

n − 8ϵβy2
n − 2βy2

n + 1
; (4.58)

if βy2
n < 1 + 4ϵ + 4

√
ϵ2 + ϵ/2, γt

n goes to +∞.

Proof. With ϵ > 0, the derivative of gϵ(γn) is given as

dgϵ(γn)
dγn

= (2ϵ + 1)
1 − (

βun

βun + β + γn

)2 , (4.59)

where un = βy2
n.

To find the fixed points of the iteration, we let

f (γn) = gϵ(γn) − γn = 0, (4.60)
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leading to

2ϵγ2
n − γnβ(βy2

n − 4ϵ − 1) + β2(1 + 2ϵ) = 0. (4.61)

The two roots of (4.61) are given by an alternative form for the quadratic formula is used,

which can be deduced from the standard quadratic formula by Vieta’s formulas.

γn(a) =
2β(1 + 2ϵ)

un − 4ϵ − 1 +
√

u2
n − 8ϵun − 2un + 1

, (4.62)

and

γn(b) =
2β(1 + 2ϵ)

un − 4ϵ − 1 −
√

u2
n − 8ϵun − 2un + 1

. (4.63)

If

un > 1 + 4ϵ + 4
√
ϵ2 + ϵ/2, (4.64)

it is not hard to verify that

un − 4ϵ − 1 −
√

u2
n − 8ϵun − 2un + 1 > 0, (4.65)

so both roots are positive. Hence they are two fixed points of the iteration. Next, we show

that γn(a) is a stable fixed point while γn(b) is an unstable one.

Plugging the root γn(a) into (4.59), we have

d
dγn

gϵ(γn)

∣∣∣∣∣∣
γn=γn(a)

= (2ϵ + 1)
1 − (

βun

βun + β + γn(a)

)2 . (4.66)

It is clear that the derivative is larger than 0. Verifying that

d
dγn

gϵ(γn)|γn=γn(a) < 1 (4.67)

is equivalent to showing that

l(un) = (2ϵ + 1)(βun)2 − 2ϵ(βun + β + γn(a))2 (4.68)
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is larger than 0. Inserting (4.62) into (4.68),

4ϵl(un)
β2 = l1(un) + ((4ϵ + 1)un − 1)

√
−l1(un), (4.69)

where

l1(un) = −(u2
n − 8ϵun − 2un + 1) < 0. (4.70)

Then
4ϵl(un)
β2 =

√
−l1(un)

(
−

√
−l1(un)+(4ϵun+un−1)

)
. (4.71)

Because

(4ϵun + un − 1)2 − (−l1(un)) = 16ϵ2u2
n + 8ϵun > 0, (4.72)

the term in (4.71)

−
√
−l1(un) + (4ϵun + un − 1) > 0, (4.73)

and we have l(un) > 0. Therefore,

d
dγn

gϵ(γn)|γn=γn(a) < 1, (4.74)

i.e., γn(a) is a stable fixed point. Similarly, it is not hard to show that l(un) < 0 (i.e.,

d
dγn

gϵ(γn) > 1) for γn = γn(b), i.e., γn(b) is an unstable fixed point.

Then we analyze the convergence behavior. As γn > 0, the derivative (4.59) is an

increasing function and it is positive. In the above, it is already shown that

d
dγn

gϵ(γn)|γn=γn(a) < 1. (4.75)

Therefore, for γn ∈ [0, γn(a)],

0 <
d

dγn
gϵ(γn) < 1. (4.76)

Thus, with an initial γ(0)
n with the range, γt

n converges to the stable fixed point γn(a) [76].

Next we consider

un < 1 + 4ϵ + 4
√
ϵ2 + ϵ/2. (4.77)
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For un ∈ (1 + 4ϵ − 4
√
ϵ2 + ϵ/2, 1 + 4ϵ + 4

√
ϵ2 + ϵ/2), it can be verified that

u2
n − 8ϵun − 2un + 1 < 0, (4.78)

leading to two complex roots γn(a) and γn(b). If

un ≤ 1 + 4ϵ − 4
√
ϵ2 + ϵ/2, (4.79)

it can be shown that

u2
n − 8ϵun − 2un + 1 ≥ 0, (4.80)

and

u2
n − 8ϵun − 2un + 1 < (un − 4ϵ − 1)2. (4.81)

Thus

un − 4ϵ − 1 < −4
√
ϵ2 + ϵ/2 < 0 (4.82)

and

un − 4ϵ − 1 ±
√

u2
n − 8ϵun − 2un + 1 < 0, (4.83)

leading to negative γn(a) and γn(b). In summary, if

un < 1 + 4ϵ + 4
√
ϵ2 + ϵ/2, (4.84)

the two roots are either complex or negative.

Hence, there is no cross-point between y = gϵ(γn) and y = γn for γn > 0. As

gϵ(0) = (2ϵ + 1)
β2

(βyn)2 + β
> 0, (4.85)

y = gϵ(γn) is above y = γn. Meanwhile gϵ(γt
n) is an increasing function. Hence, γt

n goes to

+∞ with the iteration.

When

un = 1 + 4ϵ + 4
√
ϵ2 + ϵ/2, (4.86)
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there is single root

γ∗n =
2β(1 + 2ϵ)
un − 1 − 4ϵ

. (4.87)

Plugging γ∗n into (4.59), we have

d
dγn

gϵ(γn)|γn=γ
∗
n = 1. (4.88)

Thus γ∗n is neutral fixed point [76]. Depending on the initial value γ(0)
n , γt

n may converge

to the fixed point γ∗n or diverge.

□

Based on Proposition 1 and Theorem 1, the following remarks are made by:

1. If βy2
n ≤ 1, for both ϵ = 0 and ϵ > 0, γt

n goes to +∞. However, a positive ϵ

accelerates the move of γt
n towards +∞. This can be shown as follows. As β > 0

and βy2
n ≤ 1, (βyn)2 ≤ β is obtained. Hence, from (4.49)

γt+1
n = gϵ(γt

n) ≥ (2ϵ + 1)
(β + γt

n)2

2β + γt
n

= (2ϵ + 1)
(
γt

n +
β2

2β + γt
n

)
> (2ϵ + 1)γt

n. (4.89)

From (4.89), compared to ϵ = 0, a positive value of ϵ moves γt
n towards infinity

more quickly. Considering a fixed number of iterations, a positive value of ϵ can be

significant because the precision can reach a large value much faster.

2. When ϵ = 0, γt
n converges to a finite fixed point if βy2

n > 1. In contrast, when ϵ > 0,

γt
n goes to +∞ if βy2

n ∈ (1, 1 + 4ϵ + 4
√
ϵ2 + ϵ/2). This is an additional range for

γt
n to go to infinity. Hence, a positive ϵ is stronger in terms of promoting sparsity,

compared to ϵ = 0.

3. When ϵ > 0, if βy2
n = 1+ 4ϵ + 4

√
ϵ2 + ϵ/2, γt

n may converge or diverge because the

iteration has a unique neutral fixed point as shown in Theorem 1.

4. When βy2
n > 1 + 4ϵ + 4

√
ϵ2 + ϵ/2, γt

n always converges to a fixed point. Based on
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Figure 4.2: Ratio of precisions with different ϵ.

(4.50) and (4.58), the ratio of the precisions obtained with ϵ > 0 and ϵ = 0 is given

by

γn(a)

γ′n
=

2(1 + 2ϵ)

1 − 4ϵ
βy2

n−1 +

√(
1 − 4ϵ

βy2
n−1

)2
−

8ϵ(1+2ϵ)
(βy2

n−1)2

. (4.90)

The ratio is a function of βy2
n, and

γn(a)/γ
′
n ≈ 1 + 2ϵ, (4.91)

if βy2
n is relatively large.

The ratios of the precisions versus βy2
n are shown in Figure 4.2, where they are not

shown for βy2
n < 1 + 4ϵ + 4

√
ϵ2 + ϵ/2 as they are infinity when 1 < βy2

n < 1 + 4ϵ +

4
√
ϵ2 + ϵ/2, and undefined when βy2

n ≤ 1 (see the above remarks). It can be seen that the

precision obtained with ϵ = 0 is amplified depending on the value of βy2
n. The smaller

the value of βy2
n, the larger the amplification for the corresponding precision ( in the case

of βy2
n ≤ 1, the ratios are undefined. However, considering a fixed number of iterations,

the ratios can be large as γt
n with a positive ϵ goes to infinity much quicker). Note that

yn = xn + wn and β is the noise precision. Hence, if βy2
n is a small value, it is highly likely

that the corresponding xn is zero, hence the precision γn should go to infinity. If βy2
n is a

large value, it is highly likely that the corresponding xn is non-zero, hence γn should be a

finite value. It can be seen that a positive ϵ tends to a sparser solution, and a proper value

of ϵ leads to much better recovery performance, compared to ϵ = 0.
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Figure 4.3: Precisions and their ratios (A is an identity matrix).
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Figure 4.4: Precisions and their ratios (A is i.i.d Gaussian).
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Figure 4.5: Performance of the conventional SBL. (a) Gaussian matrix; (b) correlated
matrix with c = 0.3; (c) low-rank matrix with R/N = 0.6.

The precisions of the elements of the sparse vector obtained by the SBL algorithm with

ϵ = 1.5 and ϵ = 0 are shown in Figure 4.3, where A is an identity matrix with size

10000 × 10000, the sparsity rate of the signal is 0.1, and SNR = 50dB. It can be seen

that the precisions with ϵ = 1.5 are separated into two groups more clearly, and the ratios

for the small precisions are roughly 4 (i.e., 1 + 2ϵ), while other precisions are amplified

significantly. Although the above analysis is for an identity matrix A, it is interesting

that the same results are observed for a general matrix A as demonstrated numerically

in Figure 4.4, where A is an i.i.d Gaussian matrix with size 5000 × 10000, the non-zero

shape parameter ϵ = 1.5, and the sparsity rate and the SNR are the same as the case of

identity matrix. (Similar observations are observed for other matrices). It can be seen

that the small precisions are also roughly amplified by 4 times while others are amplified

significantly, leading to two well-separated groups.

It is noted that the value of ϵ should be determined properly. If the matrix A and the

sparsity rate of x are given, a proper value for ϵ through trial and error is can be found.

However, this is inconvenient, and the sparsity rate of the signal may not be available.

The empirical equation (4.23) to determine the value of ϵ is found. Next, its effectiveness

with the SBL algorithm is examined.

Plugging the shape parameter update rule (4.23) to the conventional SBL algorithm
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leads to the following iterative algorithm (assuming the noise precision β is known):

Repeat

Z =
(
βAHA + Diag(γ̂)

)−1

x̂ = βZAHy

γ̂n = (2ϵ + 1)/(|x̂n|
2 + Zn,n), n = 1, ...,N

ϵ =
1
2

√
log(

1
N

∑
n

γ̂n) −
1
N

∑
n

log γ̂n

Until terminated

To demonstrate the effectiveness of the shape parameter update rule (4.23), the perfor-

mance of the conventional SBL algorithm with and without shape parameter update is

compared. The results are shown in Figure 4.5, where the SNR is 50dB, the size of the

measurement matrix is 800 × 1000, and the sparsity rate ρ = 0.1. The performances of

SBL at lower SNR are provided in Section 4.6.

In this figure, the support-oracle bound is also shown for reference. The matrices in

(a), (b), and (c) are respectively i.i.d. Gaussian, correlated and low-rank matrices (refer

to Section 4.6 for their generations). It can be seen that there is a clear gap between

the performance of the conventional SBL and the bounds, and with shape parameter up-

dated with our rule, the SBL algorithm attains the bound. It is worth mentioning the

empirical finding in [8], i.e., replacing the noise variance β−1 with 3β−1 can lead to better

performance of GGAMP-SBL [8]. It is used for the conventional SBL algorithm and the

performance is also included in Figure 4.5. It can be seen that it also leads to substantial

performance improvement, but its performance is inferior to that of SBL with updated ϵ

using (4.23). Moreover, in many cases, the noise variance is unknown, and it may be hard

to determine its value accurately. In contrast, our empirical update of ϵ does not require

any additional information.
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Figure 4.6: Factor graph representation of (4.94).

4.5 Extension to MMV

In this section, the MMV setting is extended by UAMP-SBL, where the relation among

the sparse vectors is exploited, e.g., common support and temporal correlation.

4.5.1 UAMP-SBL for MMV

The objective on an MMV problem is to recover a collection of length-N sparse vectors

X =
[
x(1), x(2), ..., x(L)

]
from L noisy length-M measurement vectors Y =

[
y(1), y(2), ..., y(L)

]
with the following model

Y = AX +W, (4.92)

where it is assumed that the L vectors {x(l)} share a common support (i.e., joint sparsity),

A is a known measurement matrix with size M × N, and W denotes an i.i.d. Gaussian

noise matrix with the elements having mean zero and precision β.

With the SVD A = UΛV, a unitary transformation with UH to (4.92) can be performed,

i.e.,

R = ΦX +Ω, (4.93)

where R = UHY =
[
r(1), r(2), ..., r(L)

]
, Φ = UHA = ΛV and Ω = UHW is still white and

Gaussian with mean zero and precision β. Define h(l) = Φx(l) and H = [h(1), ...,h(L)].
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Algorithm 5 UAMP-SBL for MMV
Unitary transform: R = UHY = ΦX +W, where Φ = UHA = ΛV, and A has SVD A = UΛV.
Define vector λ = ΛΛH1.
Initialization: ∀l; τl(0)

x = 1, x̂l(0) = 0, ϵ′ = 0.001, γ̂ = 1, β̂ = 1, sl = 0, and t = 0.
Do

1: ∀l; τp
l = τl(t)

x λ
2: ∀l; pl = Φx̂l(t) − τl

p · sl

3: ∀l; vl
h = τ

l
p./(1 + β̂τl

p)
4: ∀l; ĥl = (β̂τl

p · rl + pl)./(1 + β̂τl
p)

5: β̂ = LM/(
∑

l(||rl − ĥl||2 + 1Hvl
h));

6: ∀l; τl
s = 1./(τl

p + β̂
−11)

7: ∀l; sl = τl
s · (rl − pl)

8: ∀l; 1/τl
q = (1/N)λHτl

s
9: ∀l; ql = x̂l(t) + τl

q(ΦHsl)
10: ∀l; τl(t+1)

x = (τl
q/N)1H(1./(1 + τl

qγ̂))
11: ∀l; x̂l(t+1) = ql./(1 + τl

qγ̂)
12: γ̂n =

2ϵ′+1
(1/L)

∑L
l=1(|x̂l(t+1)

n |2+τl(t+1)
x )

, n = 1, ...,N.

13: ϵ′ = 1
2

√
log( 1

N
∑

n γ̂n) − 1
N

∑
n log γ̂n

14: t = t + 1
while 1

L
∑L

l=1(||x̂l(t+1) − x̂l(t)||2/||x̂l(t+1)||2) > δx and t < tmax)

Then the following joint distribution is given by

p(X,H,γ, β|R)

∝

L∏
l=1

p(r(l)|h(l), β)p(h(l)|x(l))p(x(l)|γ)p(γ)p(β)

=

L∏
l=1

M∏
m=1

N(r(l)
m |h

(l)
m , β

−1)δ(h(l)
m − [Φ]mx(l))

×

L∏
l=1

N∏
n=1

N(x(l)
n |0, γ

−1
n )

N∏
n=1

Ga(γn|ϵ, η)p(β). (4.94)

Define factors f (l)
r (r(l),h(l), β) =

∏
mN(r(l)

m |h
(l)
m , β), f (l)

δ (h(l), x(l)) =
∏

m δ(h
(l)
m − [Φ]mx(l)),

fβ(β) ∝ 1/β, f (l)
x (x(l),γ) =

∏
nN(x(l)

n |0, γ−1
n ), and fγ(γ, ϵ) =

∏
n Ga(γn|ϵ, η) denotes the hy-

perprior of the hyperparameters {γn}. The factor graph representation of (4.94) is shown

in Figure 4.6. The vector variable node γ is used in the factor graph to make it neat. It

is noted that each entry x(l)
n of x(l) is connected to γn through the function node between

them., based on which the message passing algorithm can be derived. The message up-

dates related to x(l) and h(l) are the same as those for the SMV case and can be computed

in parallel. The difference lies in the computations of β̂ and γ̂, and the relevant derivations



4.5. EXTENSION TO MMV 53

are shown in the following. The UAMP-SBL for MMV is summarized in Algorithm 5,

where UAMPv2 is employed. The complexity of the algorithm is O(MNL) per iteration.

The belief b(β) can be represented as

b(β) ∝ fβ(β)
∏
l,m

M f (l)
rm→β

(β)

∝ 1/β
∏
l,m

N(h(l)
m |r

(l)
m , β̂

−1). (4.95)

Then according to the equation

β̂ = ⟨β⟩b(β), (4.96)

we have

β̂ = ML/
∑
m,l

(
|r(l)

m − ĥ(l)
m |

2 + v(l)
hm

)
. (4.97)

According to the factor graph in Figure 4.6, the belief b (γn) can be updated as

b(γ(l)
n ) ∝ M f (l)

γn→γ
(l)
n

(γ(l)
n )M f (l)

xn→γ
(l)
n

(γ(l)
n )

= (γ(l)
n )ϵ−1+ 1

2 exp
{
−
γ(l)

n

2
(2η + (|x̂(l)

n |
2 + τ(l)

x ))
}
. (4.98)

Here, we still set η = 0 and the expectation of γn leads to

γ̂n =
2ϵ′ + 1

(1/L)
∑L

l=1(|x̂(l)
n |

2 + τ(l)
x )
, (4.99)

where ϵ′ = ϵ/L. By comparing (4.99) with (4.46), the update of ϵ′ can be expressed as

ϵ′ =
1
2

√
log(

1
N

∑
n

γ̂n) −
1
N

∑
n

log γ̂n. (4.100)

4.5.2 UAMP-TSBL

With the assumption of a common sparsity profile shared by all sparse vectors, it is

further considered exploiting the temporal correlation that exists between the non-zero

elements. The messages update related to h(l), ϵ and β are the same as those for the
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Algorithm 6 UAMP-TSBL
Unitary transform: R = UHY = ΦX + W, where Φ = UHA = ΛV, and A has SVD
A = UΛV.
Define vector λ = ΛΛH1.
Initialization: ∀l: τl(0)

x = 1, x̂l(0) = 0, ql = 0,τl(0)
q = 1, ξl(0) = 0, ψl(0) = 1, θl(0) = 0, ϕl(0) = 1,

sl(−1) = 0, ϵ′ = 0.001, γ̂(0) = 1, β̂ = 1, and t = 0.
Do

1: ξ1 = 0
2: ψ1 = 1./γ̂(t)

3: for l = 2, ..., L
4: ξl = α

(
ql−1

τl−1
q
+

ξl−1

ψl−1

)
·

(
τl−1

q ·ψ
l−1

τl−1
q +ψl−1

)
5: ψl = α2

(
τl−1

q ·ψ
l−1

τl−1
q +ψl−1

)
+ (1 − α2)/γ̂(t)

6: end
7: for l = 1, ..., L
8: τp

l = τl(t)
x λ

9: pl = Φx̂l(t) − τl
p · sl(t−1)

10: vl
h = τ

l
p./(1 + β̂τl

p)
11: ĥl = (β̂τl

p · rl + pl)./(1 + β̂τl
p)

12: end
13: β̂ = LM/(

∑
l(||rl − ĥl||2 + 1Hvl

h))
14: for l = 1, ..., L
15: τl

s = 1./(τl
p + β̂

−11)
16: sl(t) = τl

s · (rl − pl)
17: 1/τl

q = (1/N)λHτl
s

18: ql = x̂l(t) + τl
q(ΦHsl(t))

19: τl(t+1)
x = (1/N)1H(1./(1./τl

q + 1./ϕl + 1./ψl))
20: x̂l(t+1) = τl(t+1)

x (ql./τl
q + θ

l./ϕl + ξl./ψl)
21: end
22: θL−1 = 1

α
qL

23: ϕL−1 = 1
α2

(
τL

q + (1 − α2)/γ̂(t)
)

24: for l = L − 2, ..., 1
25: θl = 1

α

(
ql+1

τl+1
q
+ θl+1

ϕl+1

)
·

(
τl+1

q ϕl+1

τl+1
q +ϕl+1

)
26: ϕl = 1

α2

(
τl+1

q ϕl+1

τl+1
q +ϕl+1 + (1 − α2)/γ̂(t)

)
27: end
28: γ̂(t+1) = L(2ϵ′ + 1)/[|x̂1(t+1)|2 + τ1(t+1)

x 1
+ 1

1−α2

∑L
l=2(|x̂l(t+1)|2 + τl(t+1)

x 1)
+ α2

1−α2

∑L−1
l=1 (|x̂l(t+1)|2 + τl(t+1)

x 1) − 2α
1−α2

∑L
l=2(x̂l(t+1) · x̂(l−1)(t+1))]

29: ϵ′ = 1
2

√
log( 1

N

∑
n γ̂

(t+1)
n ) − 1

N

∑
n log γ̂(t+1)

n

30: t = t + 1
while 1

L

∑L
l=1(||x̂l(t+1) − x̂l(t)||2/||x̂l(t+1)||2) > δx and t < tmax
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Figure 4.7: The additional factor graph for deriving UAMP-TSBL.

MMV case, where no temporal correlation between non-zero elements is assumed. As

the correlation is considered, the differences from the UAMP-SBL MMV algorithm lie in

the computations of γ̂n and x(l).

As in [8], an AR(1) process is use [77] to model the correlation between x(l)
n and x(l−1)

n ,

i.e.,

x(l)
n = αx(l−1)

n +
√

1 − α2ϑ(l)
n

p(x(l)
n |x

(l−1)
n ) = N(x(l)

n |αx(l−1)
n , (1 − α2)γ−1

n ), l > 1

p(x(1)
n ) = N(x(1)

n |0, γ
−1
n ),

(4.101)

where α ∈ (−1, 1) is the temporal correlation coefficient and ϑ(l)
n ∼ N(0, γ−1

n ). Due to the

temporal correlation, the conditional prior distribution for the vector x(l) changes. The fac-

tors { fx(l)
n

(x(l)
n , γn)} is redefined, i.e., fx(l)

n
(x(l)

n , γn) = p(x(l)
n |x

(l−1)
n ) for l > 1 and fx(1)

n
(x(1)

n , γn) =

p(x(1)
n ). Thus, each x(l)

n is connected to the factor nodes f (l)
xn (x(l)

n |γn), f (l+1)
xn (x(l+1)

n |γn) and

{ f (l)
δm

(h(l)
m |x(l)),∀m}. The factor graph characterizing the temporal correlation is shown in

Figure 4.7. The remaining part of the graph is omitted as it is the same as that of the

MMV case without temporal correlation. The derivation of the extra message passing

for the UAMP-TSBL algorithm is shown in the following, and the algorithm is summa-

rized in Algorithm 6. UAMP-TSBL is an extension of the UAMP-SBL algorithm for

MMV (Algorithm 5). The complexity of the UAMP-TSBL algorithm is also dominated

by matrix-vector multiplications, and it is O(MNL) per iteration.

We only derive the message passing for the graph shown in Figure 4.7. The message
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M f (l)
xn→x(l)

n
(x(l)

n ) is computed by the BP rule with the product of messages {M f (l−1)
δm
→x(l−1)

n
(x(l−1)

n ),∀m}

defined in UAMP and message {M f (l−1)
δm
→x(l−1)

n
(x(l−1)

n )}, i.e.,

M f (l)
xn→x(l)

n
(x(l)

n )

=
〈

fx(l)
n

(x(l))
〉
M

f (l−1)
xn →x(l−1)

n

∏
mM f (l−1)

δm
→x(l−1)

n

∝ N(x(l)
n |ξ

(l)
n , ψ

(l)
n ),

(4.102)

which leads to Lines 1 to 6 of the UAMP-TSBL algorithm. Similarly, the message

M f (l+1)
xn →x(l)

n
(x(l)

n ) from factor node f (l+1)
xn to variable node x(l)

n is also updated by the BP

rule
M f (l+1)

xn →x(l)
n

(x(l)
n )

=
〈

fx(l+1)
n

(x(l+1))
〉
M

f (l+2)
xn →x(l+1)

n

∏
mM f (l+1)

δm
→x(l+1)

n

∝ N(x(l)
n |θ

(l)
n , ϕ

(l)
n ),

(4.103)

leading to Lines 22 to 27 of the UAMP-TSBL algorithm. We compute the belief of

variable x(l)
n by

b(x(l)
n ) ∝ M f (l)

xn→x(l)
n
M f (l+1)

xn →x(l)
n

∏
m

M f (l)
δm
→x(l)

n

∝ N(x(l)
n |x̂

(l)
n , τ

(l)
x )

(4.104)

leading to Lines 19 to 20 of the UAMP-TSBL algorithm. With the beliefs b(x(l)
n ) and

b(x(l−1)
n ), the messageM f (l)

xn→γn
(γn) can be obtained as

M f (l)
xn→γn

(γn) = exp
{〈

f (l)
xn

(x(l)
n |γn)

〉
b(x(l)

n )b(x(l−1)
n )

}
.

(4.105)

Then, with the messageM fγn→γn(γn) in (4.42), the belief b(γn)

b(γn) ∝ M fγn→γn(γn)M fxn→γn(γn). (4.106)
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Then the update of γ̂n can be expressed as

γ̂n = L(2ϵ′ + 1)/(|x̂(1)
n |

2 + τ(1)
x +

1
α2

L∑
l=2

(|x̂(l)
n |

2 + τ(l)
x )

+
α2

1 − α2

L−1∑
l=1

(|x̂(l)
n |

2 + τ(l)
x ) −

2α
1 − α2

L∑
l=2

(x̂(l)
n x̂(l−1)

n )).

(4.107)

4.6 Numerical results

In this section, the proposed UAMP-(T)SBL algorithms is compared with the conven-

tional SBL and state-of-the-art AMP-based SBL algorithms. The performance of various

algorithms using normalized MSE is evaluated, and is defined as

NMSE ≜
1
K

K∑
k=1

||x̂k − xk||
2/||xk||

2, (4.108)

NMSE ≜
1

KL

J∑
k=1

L∑
l=1

||x̂(l)
k − x(l)

k ||
2/||x(l)

k ||
2 (4.109)

for the SMV and MMV cases respectively, where x̂k (x̂(l)
k ) is the estimate of xk (x(l)

k ),

and K is the number of trials. Since different algorithms have different computational

complexity per iteration and they require a different number of iterations to converge, as

in [8], the runtime of the algorithms to indicate their relative computational complexity is

measured. It is noted that the time consumed by the SVD in UAMP-SBL is counted for

the runtime.

To test the robustness and performance of the algorithms, the following measurement

matrices is used:

1. Ill-conditioned Matrix: Matrix A is constructed based on the SVD A = UΛV where

Λ is a singular value matrix with Λi,i/Λi+1,i+1 = κ
1/(M−1) for i = 1, 2, ...,M − 1 (i.e.,

the condition number of the matrix is κ).

2. Correlated Matrix: The correlated matrix A is constructed using A = C1/2
L GC1/2

R ,

where G is an i.i.d. Gaussian matrix with mean zero and unit variance, and CL is

an M × M matrix with the (m, n)th element given by c|m−n| where c ∈ [0, 1]. Matrix

CR is generated in the same way but with a size of N ×N. The parameter c controls
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Figure 4.8: Performance comparison (ill-conditioned matrices).

the correlation of matrix A.

3. Non-zero Mean Matrix: The elements of matrix A are drawn from a non-zero mean

Gaussian distribution, i.e., am,n ∼ N(am,n|µ, 1). The mean µ measures the derivation

from the i.i.d. zero-mean Gaussian matrix.

4. Low Rank Matrix: The measurement matrix A = BC, where the size of B and C

are M × R and R × N, respectively, and R < M. Both B and C are i.i.d. Gaussian

matrices with mean zero and unit variance. The rank ratio R/N is used to measure

the deviation of matrix A from the i.i.d. Gaussian matrix.

4.6.1 Numerical Results for SMV

In this section, UAMP-SBL against the conventional SBL [6] and the state-of-the-art

AMP based SBL algorithm GGAMP-SBL [8] with estimated noise variance and 3 times

of the true noise variance are compared. The vector x is drawn from a Bernoulli-Gaussian

distribution with a non-zero probability ρ. The SNR is defined as SNR ≜ E ∥Ax∥2 /E ∥w∥2.

As a performance benchmark, the support-oracle MMSE bound [8] is also included.

M = 800, N = 1000 and the SNR is set to be 60dB, unless it is specified are set. For

UAMP-SBL the maximum iteration number tmax = 300 (note that there is no inner iter-
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Figure 4.9: Performance comparison (correlated matrices).

ation in UAMP-SBL) are set. GGAMP-SBL is a double loop algorithm, the maximum

numbers of E-step and outer iteration are set to be 50 and 1000 respectively. The damp-

ing factor for GGAMP-SBL is 0.2 to enhance its robustness against tough measurement

matrices. It is noted that the damping factor can be increased to reduce the runtime of

GGAMP-SBL but at the cost of reduced robustness.

In Figure 4.8, the performance of various algorithms in terms of NMSE versus the

condition number is shown in (a) for a sparsity rate of ρ = 0.1 and (b) for a sparsity

rate of ρ = 0.3. It can be seen from Figure 4.8(a) that UAMP-SBL delivers the best

performance (even better than the conventional SBL algorithm), which closely approaches

the support-oracle bound. With a larger sparsity rate in Figure 4.8(b), UAMP-SBL still

exhibits excellent performance and it performs slightly better than SBL and significantly

better than GGAMP-SBL when the condition number is relatively large. In addition,

the simulation performance of UAMP-SBL matches well with the performance predicted

with SE.

Figure 4.9 shows the performance of various algorithms versus a range of correlation

parameter c from 0.1 to 0.5, where the sparsity rate ρ = 0.1 in (a) and ρ = 0.3 in (b).

From this figure, it can be seen that, UAMP-SBL still delivers exceptional performance,

which is better than SBL and significantly better than GGAMP-SBL when the correlation
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Figure 4.10: Performance comparison: (a)low rank matrices; (b) non-zero mean
matrices.
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Figure 4.11: Runtime of algorithms under ill-conditioned matrices with ρ = 0.3.

parameter c is relatively large. The gap between UAMP-SBL and GGAMP-SBL becomes

more notable with a higher sparsity rate. The performance of UAMP-SBL matches well

with SE again.

In Figure 4.10, it is examined by the performance of the algorithms versus rank ratio in

(a), where the sparsity rate ρ = 0.1, and versus non-zero mean in (b), where the sparsity

rate ρ = 0.3. It can be seen that UAMP-SBL still delivers performance which closely

matches the support-oracle bound, and is slightly better than that of SBL. It also can be

seen that GGAMP-SBL diverges when the mean µ is relatively large. The performance

of UAMP-SBL matches well with SE as well.
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Figure 4.12: Support recovery rate comparison: (a) low rank matrices; (b) non-zero
mean matrices.

The average runtime of various algorithms is shown in Figure 4.11, where the sparsity

rate ρ = 0.3, and the measurement matrice are correlated in (a) and ill-conditioned in

(b). It can be seen that UAMP-SBL is much faster than GGAMP-SBL and SBL. SBL is

normally the slowest as it has the highest complexity due to the matrix inverse in each

iteration. It is noted that, for GGAMP-SBL, the damping factor to be relatively small

value 0.2 is set to enable it to achieve better performance and robustness. If the damping

factor is increased, GGAMP-SBL could become faster but at the cost of offsetting its

performance and robustness.

In summary, when the deviation of the measurement matrices from the i.i.d. zero-

mean Gaussian matrix is small, GGAMP-SBL (with 3× true noise variance) and UAMP-

SBL deliver similar performance, and both of them can achieve the support-oracle bound.

However, when the deviation is relatively large, UAMP-SBL can significantly outperform

GGAMP-SBL (UAMP-SBL can still approach the support oracle bound closely in many

cases), which demonstrates that UAMP-SBL is much more robust. In addition, UAMP-

SBL is also much faster. Meanwhile, the simulation performance of UAMP-SBL matches

well with SE.

In Figure 4.12, the support recovery rate of the algorithms versus correlation parameter

c for correlation matrices in (a) and mean value µ for non-zero mean matrices in (b),

where the sparse rate ρ = 0.3 is evaluated. The support recovery rate is defined as the
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Figure 4.13: Performance and runtime comparisons of various algorithms where SNR
= 35dB.

percentage of successful trials in the total trials [78]. In the noiseless case, a successful

trial is recorded if the indexes of estimated non-zero signal elements are the same as the

true indexes. In the noisy case, as the true sparse vector cannot be recovered exactly, the

recovery is regarded to be successful if the indexes of the estimated elements with the

K largest absolute values are the same as the true indexes of non-zero elements in the

sparse vector x, where K is the number of non-zero elements in x. From the results, It

can seen that UAMP-SBL and SBL deliver similar performance and they can significantly

outperform GGAMP-SBL when c or µ is relatively large.

The performance of various algorithms at SNR = 35dB, and the NMSE performance

and runtime of the algorithms are shown in Figure 4.13, where (a) and (b) are for non-zero

mean matrices, and (c) and (d) are for ill-conditioned matrices are compared. The sparsity

rate ρ = 0.1. Again, it can be seen that, compared to GGAMP-SBL, UAMP-SBL delivers

better performance with considerably much smaller runtime when the mean or condition

number of the matrices are relatively large. The performance of various algorithms versus

SNR can be shown in Figure 4.14, where the matrices are highly ill-conditioned with a
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Figure 4.14: Performance and runtime comparisons of various algorithms for highly
ill-conditioned matrices.

condition number κ = 104. It can be seen that UAMP-SBL performs better and is faster

than SBL and GGAMP-SBL.

The key difference between AMP and UAMP is that a unitary transformation is per-

formed in UAMP, which makes UAMP much more robust against a generic measurement

matrix. Inspired by this, the impact of the unitary transformation on the GGAMP-SBL

algorithm is tested, where the unitary transformation to the original model is perform

and then GGAMP-SBL is carried out.this algorithm is called UT-GGAMP-SBL, and is

compared with UAMP-SBL in the case of correlated matrices. The performance and the

corresponding runtime are shown in Figure 4.15, where the hyper-parameter ϵ of UT-

GGAMP-SBL is not updated in (a) and (b) while updated in (c) and (d). It can be seen

that, thanks to the unitary transformation, the stability of GGAMP-SBL can be signifi-

cantly improved as expected. Figure 4.15 (a) shows that UT-GGAMP-SBL with 3 times

true noise variance achieves almost the same performance as UAMP-SBL, however, UT-

GGAMP-SBL requires the knowledge of noise variance and it is significantly slower than

UAMP-SBL. Figure 4.15 (c) shows that updating ϵ is not helpful for UT-GGAMP-SBL.

UT-GGAMP-SBL with estimated noise variance simply diverges (so its performance is

not shown). UT-GGAMP-SBL with 3 times true noise variance is inferior to UAMP-SBL

when c is relatively large. Again, UAMP-SBL is much faster.

In Figure 4.16, UAMP-SBL with VAMP-EM in [79] is compared. In VAMP-EM,

Bernoulli-Gaussian priors are employed and the parameters are learned using EM. The
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Figure 4.15: Performance and runtime comparisons of UAMP-SBL and
UT-GGAMP-SBL.
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Figure 4.16: Performance and runtime comparisons of UAMP-SBL and VAMP-EM.
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Figure 4.17: Performance comparison of various algorithms in the case of MMV.

NMSE performance and runtime are shown in Figure 4.16, where (a) and (b) are for ill-

conditioned matrices, and (c) and (d) are for correlated matrices. The sparsity rate ρ = 0.3.

It can seen that, compared to VAMP-EM, UAMP-SBL can deliver better performance

while runs faster.

4.6.2 Numerical Results for MMV

The elements of the sparse vectors
{
x(l), l = 1 : L

}
are drawn from a Bernoulli-Gaussian

distribution, and the vectors share a common support. The number of measurement vec-
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Figure 4.18: Performance comparison of various algorithms in the case of MMV with
temporal correlation.

tors is 5. The performance of the algorithms with ill-conditioned, correlated, non-zero

mean and low-rank measurement matrices is shown in Figure 4.17 (a)-(d), respectively.

In this figure, the performance of the direct extension of the conventional SBL algorithm

to the MMV model (MSBL) [80] and support-oracle bound is also included.

It can be seen from this figure that, when the deviation of the measurement matrices

from the i.i.d. zero-mean Gaussian matrix is small, GGAMP-SBL (with 3× true noise

variance) and UAMP-SBL deliver similar performance, and both of them can approach

the bound closely. MSBL works slightly worse than GGAMP-SBL and UAMP-SBL.

However, when the deviation is relatively large, MSBL delivers slightly better perfor-

mance but at high complexity. In most cases, UAMP-SBL and MSBL almost have the

same performance, and can significantly outperform GGAMP-SBL. As an example, It can

be shown the average runtime of different algorithms in the case of ill-conditioned ma-

trices in Figure 4.17(e), where UAMP-SBL converges significantly faster than GGAMP-
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Figure 4.19: Performance comparison of various algorithms in the case of MMV with
temporal correlation.

SBL and MSBL.

Furthermore, a numerical study is presented to illustrate the performance of UAMP-

SBL when incorporating the temporal correlation. Besides the temporally correlated SBL

(TMSBL) [78] and GGAMP-SBL, the recovery performance with a lower bound: the

achievable NMSE by a support-aware Kalman smoother (SKS) [81] with the knowledge

of the support of the sparse vectors and the true values of β, α and γ is also compared.

The SKS is implemented in a more efficient way by incorporating UAMP. As examples,

low rank and non-zero mean measurement matrices are used to test their performance.

The sparsity rate ρ = 0.1, SNR = 50dB and the temporal correlation coefficient α = 0.8 in

Figure 4.18 and the temporal correlation coefficient α = 0.6 in Figure 4.19. It can be seen

from Figure 4.18 and Figure 4.19 that, UAMP-TSBL can approach the bound closely and

outperform other algorithms significantly when the rank ratio is relatively low and the

mean is relatively high. In addition, UAMP-TSBL is much faster.
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4.7 Conclusion

In this paper, leveraging UAMP, UAMP-SBL for sparse signal recovery with the frame-

work of structured variational inference is proposed, which inherits the low complexity

and robustness of UAMP against a generic measurement matrix. It is demonstrated that,

compared to the state-of-the-art AMP based SBL algorithm, UAMP-SBL can achieve

much better performance in terms of robustness, speed and recovery accuracy.



Chapter 5

UAMP for Bilinear Recovery

5.1 Introduction

The problem of bilinear recovery with model Y =
∑K

k=1 bkAkC+W, where {bk} and C are

jointly recovered with known Ak from the noisy measurements Y is considered. When Y,

C and W are replaced with the corresponding vectors y, c and w, respectively, the above

multiple measurement vector (MMV) problem is reduced to a single measurement vector

(SMV) problem. Model (2.7) covers a variety of problems, e.g., compressed sensing (CS)

with matrix uncertainty [11], joint channel estimation and detection [45], self-calibration

and blind deconvolution [10], and structured dictionary learning [9].

Recently, several approximate message passing (AMP) [69] [82] based algorithms have

been developed to solve the bilinear problem, which show promising performance, com-

pared to existing non-message passing alternates [14]. The generalized AMP (GAMP)

[15] was extended to bilinear GAMP (BiGAMP) [16] for solving a general bilinear prob-

lem, i.e., recover both A and X from observation Y = AX+W. The parametric BiGAMP

(P-BiGAMP) is then proposed in [17], which works with model (2.7) to jointly recover

{bk} and C. Lifted AMP was proposed in [18] by using the lifting approach [19], [10].

However, these AMP based algorithms are vulnerable to difficult A matrices, e.g., ill-

conditioned, correlated, rank-deficient or non-zero mean matrices as AMP can easily di-

verge in these cases [20].

In this work, leveraging UAMP, we propose a more robust and faster approximate in-

69
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ference algorithm for bilinear recovery, which is called Bi-UAMP. By using the lifting

approach, the original bilinear problem is reformulated as a linear one. Then, the struc-

tured variational inference (VI) [50], [52], [53], expectation propagation (EP) [40] and

belief propagation (BP) [83], [84] are combined with UAMP, where UAMP is employed

to handle the most computational intensive part, leading to the fast and robust approx-

imate inference algorithm Bi-UAMP. It is shown that Bi-UAMP performs significantly

better and is much faster than state-of-the-art bilinear recovery algorithms for difficult

matrices.

5.1.1 Chapter’s Organization

The organization of the chapter is as follows. In Section 5.2, the Bi-UAMP algorithm is

introduced. Bi-UAMP is designed for SMV problems. In Section 5.3 Bi-UAMP is then

extended for MMV problems and its properties are investigated. Numerical examples and

comparisons with state-of-the-art message passing and non-message passing algorithms

are provided in Section 5.4, and conclusions are drawn in Section 5.5.

5.2 Bilinear UAMP

5.2.1 Problem Formulation

Different from [11], a Bayesian treatment of the bilinear recovery problem is considered

y =
K∑

k=1

bkAkc + w, (5.1)

where b ≜ [b1, ..., bK]T , c and β (the precision of the noise) are random variables with

priors p(b), p(c) and p(β), respectively. It is noted that, in the case of no a priori infor-

mation available, p(b), p(c) and p(β) can be simply chosen as non-informative priors.

This also differs from the development of BAd-VAMP in [14], where both b and β are

treated as unknown deterministic variables, and their values are estimated following the

framework of expectation maximization (EM). However, a Bayesian treatment of b is

more advantageous. In the case of a priori information available for b, a Bayesian method
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enables the use of the a priori information, which may be very helpful to improve the

recovery performance. If no a priori information is known, a non-informative prior can be

simply used. Moreover, in the context of iterative inference considered in this paper, the

Bayesian treatment of b is also different from that of the EM method in that only a point

estimate of b is involved in the iteration of the EM method, while a distribution of b is

involved in the iterative process of the method with Bayesian treatment. Even in the case

of non-informative priors for the method with Bayesian treatment, they are still different

in this way normally.. Here, for simplicity, the SMV problem is taken as example, but the

extension of our discussion to the case of MMV is straightforward.

The joint conditional distribution of b, c and β can be expressed as

p(b, c, β|y) ∝ p(y|b, c, β)p(b)p(c)p(β). (5.2)

It is aimed at finding the a posterior distributions p(b|y) and p(c|y), and therefore their

a posterior means that can be used as their estimates, i.e., b̂ = E(b|y) and ĉ = E(c|y).

However, this is often intractable because high dimensional integration is required to

compute the a posteriori distributions p(b|y) and p(c|y). As a result, the approximate

Bayesian inference techniques is used.

5.2.2 Problem and Model Reformulation for Efficient UAMP-Based

Approximate Inference

Similar to the lifting approach, A ≜ [A1, ...,AK]M×NK are defined, then the original bilinear

model can be reformulated as

y = Ax + w (5.3)

with the auxiliary variable

x = b ⊗ c =


b1c
...

bKc


NK×1

, (5.4)
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where x can be indexed as

x =
[
x1,1, ...xN,1, ..., xn,k, ...xN,K

]T (5.5)

with

xn,k = cnbk. (5.6)

With an SVD for matrix A, i.e., A = UΛV, performing unitary transformation yields

r = Φx+ω, where r = UHy,Φ = ΛV has a size of M×NK, andω = UHw is still white and

Gaussian with the same precision β. It is noted that performing the unitary transformation

here is purely to facilitate the use of UAMP. As UH is a unitary matrix, the transformation

will not result in any loss. So the resultant algorithms will work with the transformed

observation r, instead of y. Then define a new auxiliary variable z = Φx as in [85], [48],

[35] and [86]. Later, it will be seen that the introduction of the auxiliary variables x and

z facilitates the integration of UAMP into the approximate Bayesian inference algorithm,

which is crucial to achieving efficient and robust inference.

Table 5.1: Distributions and factors in (5.7)

Factor Distribution Function
fr p (r|z, β) N

(
z; r, β−1I

)
fz p (z|x) δ (z −Φx)
fx p(x|c,b) δ (x − b ⊗ c)
fxn,k p

(
xn,k|bk, cn

)
δ
(
xn,k − bkcn

)
fc p(c) prior of c, e.g., prior promoting sparsity
fb p(b) prior of b
fβ p(β) ∝ β−1

With the two latent variables x and z, the following joint conditional distribution of

c,b, x, z, β and its factorization are

p(c,b, x, z, β|r)

∝ p(r|z, β)p(z|x)p(x|b, c)p(c)p(b)p(β)

≜ fr(z, β) fz(z, x) fx(x,b, c) fc(c) fb(b) fβ(β). (5.7)
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Figure 5.1: Factor graph representation of (5.7).

Hence our aim is to find the a posteriori distributions p(c|r) and p(b|r) and their estimates

in terms of the a posteriori means, i.e., ĉ = E(c|r) and b̂ = E(b|r). It seems that, due

to the involvement of two extra latent variables x and z, the use of (5.7) could be more

complicated than that of (5.2), but it enables efficient approximate inference by incorpo-

rating UAMP, as detailed later. The probability functions and the corresponding factors

(to facilitate the factor graph representation) are listed in Table 1, and a factor graph rep-

resentation of (5.7) is depicted in Figure 5.1.

The framework of structured variational inference (SVI) [50] is followed, which can

be formulated nicely as message passing with graphical models [52], [53], [54], [87].

The trial function for the joint conditional distribution function p(c,b, x, z, β|r) in (5.7) is

chosen as

q̃(b, c, x, z, β) = q̃(β)q̃(b, c, x, z). (5.8)

The employment of this trial function corresponds to a partition of the factor graph in

Figure 5.1 [53], i.e., q̃(β) and q̃(b, c, x, z) are associated respectively with the subgraphs

denoted by Part (i) and Part (ii), where the variable node β is external to Part (ii). With

SVI, the variational lower bound

L
(
q̃(b, c, x, z, β)

)
=

E
[
log(p(c,b, x, z, β|r))] − E

[
log(q̃(b, c, x, z, β))] (5.9)

is maximized with respect to the trial function, so that the following Kullback-Leibler

divergence

KL
(
q̃(β)q̃(b, c, x, z)||p(b, c, x, z, β|r)

)
, (5.10)
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is minimized, which leads to the approximation (by integrating out β)

q̃(b, c, x, z) ≈ p(b, c, x, z|r). (5.11)

From the above, by integrating out c, x and z, it is expected that the marginal q̃(b) ≈

p(b|r), and similarly, by integrating out b, x and z, q̃(c) ≈ p(c|r). In terms of structured

variation message passing [53], the computation of q̃(b, c, x, z) corresponds to BP in the

subgraph shown in Part (ii) of the factor graph in Figure 5.1, except the function node

fr because it connects an external variable node β [53]. It is noted that the BP message

passing between z, fz and x (i.e., BP in the dash-dotted box in Figure 5.1) can be diffi-

cult and computational intensive. Fortunately, AMP, derived based on loopy BP (which

in this case is actually UAMP as the unitary transformation has already been performed

previously) is an excellent replacement to accomplish the BP message passing for the

dash-dotted box efficiently. In addition, there are difficulties with the priors p(b) and p(c)

(corresponding to the factors fb and fc in Figure 5.1) as they may not be friendly, resulting

in intractable BP messages. This can be handled with EP, which has been widely used

in the literature to solve similar problems. At the variable node c (or b), an approximate

marginal about c (or b) through an iterative process with moment matching [40] is ob-

tained, thereby an approximation to the a posteriori mean E(c|r) (or E(b|r)), which can be

served as our estimate.

It is noted that, all inference methods mentioned above including VI, EP, and UAMP

involve an iterative process (but with a different hierarchy), and the multiple iterative

processes can be simply combined as a single one. In terms of message passing, this is

to carry out a forward message passing process and a backward message passing process

in Figure 5.1 as an iteration. Thanks to the incorporation of UAMP to handle the BP

in the dashed-dotted box in Figure 5.1, this leads to an efficient and robust approximate

inference algorithm with details elaborated in next section.
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5.2.3 Derivation of the Message Passing Algorithm

In this section, the forward and backward message passing in Figure 5.1 according to the

principle of structured variational message passing [50], [52], [53] and EP are represented

in detail. Throughout this thesis, the notation Mna→nb(h) is used to denote a message

passed from node na to node nb, which is a function of h.

5.2.3.1 Message Computations at Nodes x, fz, z and fr

Treat x, fz and z as a module, shown by the dash-dotted box in Figure 5.1. In the back-

ward direction, with the incoming messages from the factor nodes fx as the input, the

module needs to output the messageMz→ fr(z). In the forward direction, with the incom-

ing messages from the factor node fr as input, the module needs to output the message

Mx→ fx(x). This is the most computational intensive part of the approximate inference

method, and it can be efficiently handled with UAMP as mentioned earlier. Consider-

ing the structure of x shown in (5.4), the length-NK vector x is divided into K length-N

vectors {xk, k = 1, ...,K}, i.e.,

x =
[
xT

1 , ..., x
T
K

]T
. (5.12)

Due to this, the UAMP algorithms in Section II cannot be applied directly, but the deriva-

tion still follows that of the UAMP algorithms exactly.

Note that the size of matrixΦ is M×NK. It is partitioned into K sub-matrices {Φk, k =

1, ...,K}, each with a size of M × N, i.e.,

Φ = [Φ1, ...,ΦK] . (5.13)

Then K vectors {ϕk, k = 1, ...,K}, each with a length of M, is defined, i.e.,

ϕk = |Φk|
21M. (5.14)

With the above definitions, the following model is

r =
K∑

k=1

Φkxk + ω. (5.15)
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The backward message passing is firstly investigated. Assume that the incoming mes-

sage from factor node fx is available, which is the mean and variance of xk. Following

UAMP, it is assumed that the elements of xk have a common variance vxk , and the com-

putation of vxk will be detailed later. The mean of x is denoted by x̂. Then two vectors νp

and p are calculated as

νp =

K∑
k=1

ϕkvxk (5.16)

p =
K∑

k=1

Φkx̂k − νp · s, (5.17)

where s is a vector, which is computed in the last iteration. UAMP also allows a loopy

BP derivation that is the same as AMP, except that the derivation is based on the unitary

transformed model. According to the BP derivation of (U)AMP,

Mz→ fr(z) =M fz→z(z) = N
(
z; p,D(νp)

)
. (5.18)

It is noted that the factor node fr connects the external variable node β. According to

the rules of the structured variational message passing [53], the messageM fr→β(β) can be

computed as

M fr→β(β) ∝ exp
{∫

z
b(z)log fr

}
(5.19)

where b(z) is the the approximate marginal of z, i.e.,

b(z) ∝ M fr→z(z)Mz→ fr(z)

= N(z; ẑ,D(νz))
(5.20)

with

νz = 1./
(
1./νp + β̂1M

)
(5.21)

ẑ = νz ·
(
p./νp + β̂r

)
(5.22)

where β̂ is the approximate a posteriori mean of the noise precision β in the last iteration.

Note that there may be zero elements in νp. β̂ is initialized to 1 according to [8]. To avoid
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the potential numerical problem, the above equations can be rewritten as

νz = νp./(1 + β̂νp) (5.23)

ẑ = (β̂νp · r + p)./(1 + β̂νp). (5.24)

It is noted that in the above derivation, the messageM fr→z(z) is required, which turns out

to be Gaussian, i.e.,M fr→z(z) = N(z, r, β̂−1), and its derivation is delayed to (5.26). Then,

it is not hard to show that the message

M fr→β(β) ∝ βM exp{−β(||r − ẑ||2 + 1Tνz)}. (5.25)

This is the end of the backward message passing.

Next, the forward message passing is investigated. According to the rules of the struc-

tured variational message passing and noting that fr connects the external variable node

β,

M fr→z(z) ∝ exp
{∫

β

b(β)log fr

}
∝ N(z; r, β̂−1) (5.26)

with

b(β) ∝ M fr→β(β) fβ (5.27)

∝ βM−1 exp{−β
(
||r − ẑ||2 + 1Tνz

)
},

and

β̂ =

∫
β

βb(β) =
M

∥r − ẑ∥2 + 1Tνz
, (5.28)

where the use of the notation β̂ is slightly abused as it is not distinguished from the last

iteration. The result for β̂ coincides with the result in [88] and [89].

The messageM fr→z(z) is input to the dash-dotted box in Figure 5.1. The Gaussian form
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of the message suggests the following model

r = z + w′, (5.29)

where the noise w′ is Gaussian with mean zero and precision β̂. This allows seamless

connection with the forward recursion of UAMP. According to UAMP, the intermediate

vectors νs and s are updated by

νs = 1./(νp + β̂
−11) (5.30)

s = νs · (r − p) . (5.31)

Then calculate vectors νqk and q̂k for k = 0, ...,K with

νqk = 1/
〈
|ΦH

k |
2νs

〉
(5.32)

qk = x̂k + νqkΦ
H
k s. (5.33)

The messages qk and νqk are the mean and variance of xk. According to the BP derivation

of (U)AMP,

Mx→ fx(x) = N(x; q,D(νq)) (5.34)

with

q = [qT
1 , ...,q

T
K]T (5.35)

νq = [νq1 , ..., νqK ]T ⊗ 1N , (5.36)

which is the output of the dash-dotted box in Figure 5.1. This is the end of the forward

message passing.

5.2.4 Message Computations at Nodes fx, b and c

It is noted that the function fx(x, c,b) can be further factorized, i.e.,

fx(x, c,b) =
∏

n,k
fxn,k(bk, cn), (5.37)
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Figure 5.2: Factor graph representation for fxn,k (cn, bk).

and the factor fxn,k(cn, bk) is shown in Figure 5.2 with solid lines, which will be used to

derive the forward and backward message computations.

The forward message passing is firstly investigated , where the message Mx→ fx(x)

is available from the dash-dotted box . The nth entry of qk is denoted by qn,k, then

Mxn,k→ fxn,k
(xn,k) = N(xn,k; qn,k, νqk) and the factor fxn,k = δ

(
xn,k − bkcn

)
are given.

To compute the messageM fxn,k→cn(cn) with BP at factor node fxn,k , xn,k and bk is need

to integrate out. However, due to the multiplication of bk and cn, the message will be

intractable even if the incoming message Mbk→ fxn,k
(bk) is Gaussian. To solve this, BP

is applied firstly and the variable xn,k is eliminated to get an intermediate function node

f̃xn,k(cn, bk), i.e.,

f̃xn,k(cn, bk) =
∫

xn,k

Mxn,k→ fxn,k
(xn,k) · fxn,k

= N
(
cnbk; qn,k, νqk

)
. (5.38)

This turns the function node fxn,k with the hard constraint δ
(
xn,k − bkcn

)
to a ’soft’ function

node, enabling the use of variational inference to handle cn and bk. With the intermediate

local function f̃xn,k(bk, cn), the outgoing message from fxn,k is calculated to cn as

M fxn,k→cn(cn) = exp
{∫

bk

b(bk) log f̃xn,k

}
= N

(
cn; c⃗n,k, ν⃗cn,k

)
(5.39)
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where

c⃗n,k =
qn,kb̂∗k
|b̂k|

2 + νbk

, (5.40)

ν⃗cn,k =
νqk

|b̂k|
2 + νbk

, (5.41)

with b̂k and νbk being the approximate a posteriori mean and variance of bk, which are

computed in (5.58) and (5.59). It is noted that, in the case of b1 = 1, b̂1 = 1 and νb1 = 0

are set. With BP and referring to Figure 5.2, the messageMcn→ fc(cn) can be represented

as

Mcn→ fc(cn) = N
(
cn; c⃗n, ν⃗cn

)
(5.42)

with

ν⃗cn = 1/
K∑

k=1

1
ν⃗cn,k

(5.43)

c⃗n = ν⃗cn

K∑
k=1

c⃗n,k

ν⃗cn,k

. (5.44)

So, the marginal of cn (n = 1, ...,N) can be expressed as

b(cn) =
∫

c∨cn

∏
n

Mcn→ fc(cn) fc. (5.45)

As mentioned earlier, according to EP, the marginal is projected to be Gaussian through

moment matching, i.e.,

b
′(cn) = N

(
cn; ĉn, νcn

)
(5.46)

with

ĉn = E
[
cn|{⃗νcn , c⃗n}, fc

]
(5.47)

νcn = Var
[
cn|{⃗νcn , c⃗n}, fc

]
, (5.48)
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which are a posterior mean and variance of cn based on the prior fc and the following

pseudo observation model [35], [90]

c⃗n = cn + w′n, (5.49)

with w′n denoting a Gaussian noise with mean 0 and variance ν⃗cn .

Similarly, the message from fxn,k to bk is calculated, i.e.,

M fxn,k→bk(bk) = N
(
bk; b⃗n,k, ν⃗bn,k

)
(5.50)

where

b⃗n,k =
qn,kĉ∗n
|ĉn|

2 + νcn

, (5.51)

ν⃗bn,k =
νqk

|ĉn|
2 + νcn

(5.52)

with ĉn and νcn being the approximate a posteriori mean and variance of cn, which are

updated in (5.47) and (5.48). Then with BP, the messageMbk→ fb(bk) can be expressed as

Mbk→ fb(bk) = N
(
bk; b⃗k, ν⃗bk

)
(5.53)

with

ν⃗bk = 1/
N∑

n=1

1
ν⃗bn,k

(5.54)

b⃗k = ν⃗bk

N∑
n=1

b⃗n,k

ν⃗bn,k

. (5.55)

Then the marginal of each bk is computed,

b(bk) =
∫

b∨bk

∏
k

Mbk→ fb(bk) fb. (5.56)

Similarly, it is then projected to be Gaussian, i.e.,

b
′(bk) = N

(
bk; b̂k, νbk

)
(5.57)
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with

b̂k = E
[
bk|{⃗νbk , b⃗k}, fb

]
(5.58)

νbk = Var
[
bk|{⃗νbk , b⃗k}, fb

]
, (5.59)

which are the a posteriori mean and variance of bk based on the prior fb and the following

pseudo observation model

b⃗k = bk + w′′k (5.60)

with w′′k denoting a Gaussian noise with mean 0 and variance ν⃗bk . It is noted that, in the

case of b1 = 1, b̂1 = 1 and νb1 = 0 is set. This is the end of the forward message passing.

Next, the backward message passing is investigated. According to the rule of EP, the

backward message

Mbk→ fxn,k
(bk) =

b′(bk)
M fxn,k→bk

(bk)
. (5.61)

They are represented collectively asMb→ fx(b), which is Gaussian with mean ⃗b and vari-

ance D( ⃗νb). With the factor graph shown in Figure 5.2, the mean and variance can be

calculated as

⃗νb =
(
(1./νb) ⊗ 1N − 1./ν⃗b

).−1

=
(
(νb ⊗ 1N) · ν⃗b

)
./
(
ν⃗b − (νb ⊗ 1N)

)
(5.62)

⃗b = ⃗νb ·
((

b̂./νb
)
⊗ 1N − b⃗./ν⃗b

)
,

=
(
(b̂ ⊗ 1N) · ν⃗b − b⃗ · (νb ⊗ 1N)

)
./
(
ν⃗b − (νb ⊗ 1N)

)
(5.63)

where νb = [νb1 , ..., νbK ]T , b̂ = [b̂1, ..., b̂K]T ,
[
ν⃗b

]
(k−1)N+n = ν⃗bn,k and [ b⃗ ](k−1)N+n = b⃗n,k.

Similarly, the message Mc→ fx(c) is also Gaussian with mean ⃗c, and variance D( ⃗νc),
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Algorithm 7 Bi-UAMP for SMV
Unitary transform: r = UHy = Φx + ω, where AM×NK = UΛV, Φ = UHA = ΛV, and
x = b ⊗ c with b = [b1, ..., bK]T and c = [c1, ..., cN]T .
Let Φ = [Φ1, ...,ΦK], ϕk = |Φk|

21N , and x =
[
xT

1 , ..., x
T
K

]T
, k = 1, ...K and n = 1, ...,N.

Initialize b̂k, νbk = 1, νxk = 1, x̂k = 0, s = 0 and β̂ = 1.
Repeat

1: νp =
∑

k ϕkνxk

2: p =
∑

kΦkx̂k − νp · s
3: νz = νp./(1 + β̂νp)
4: ẑ = (β̂νp · r + p)./(1 + β̂νp)
5: β̂ = M/(∥r − ẑ∥2 + 1Tνz)
6: νs = 1./(νp + β̂

−11M)
7: s = νs · (r − p)
8: ∀k : νqk = 1/

〈
|ΦH

k |
2νs

〉
9: ∀k : qk = x̂k + νqkΦ

H
k s

(In the case of b1 = 1, set b̂1 = 1 and νb1 = 0.)
10: ∀k : c⃗k = qkb̂∗k/(|b̂k|

2 + νbk)
11: ∀k : ν⃗ck = 1Nνqk/(|b̂k|

2 + νbk)
12: ν⃗c = 1N ./(

∑
k 1N ./ν⃗ck)

13: c⃗ = ν⃗c ·
∑

k (⃗ck./ν⃗ck)
14: ∀n : ĉn = E[cn |⃗νc, c⃗, fc]
15: ∀n : νcn = Var[cn |⃗νc, c⃗, fc]
16: νc =< [νc1 , ..., νcN ] > 1N , and ĉ = [ĉ1, ..., ĉN]T

17: ∀k : ν⃗bk = νqk1N ./(|ĉ|2 + νc)
18: ∀k : b⃗k = qk · ĉ∗./(|ĉ|2 + νc)
19: ∀k : ν⃗bk = (1T

N(1N ./ν⃗bk))
−1

20: ∀k : b⃗k = ν⃗bk1
T
N(b⃗k./ν⃗bk)

21: ∀k : b̂k = E[bk|{⃗νbk , b⃗k}, fb]
22: ∀k : νbk = Var[bk|{⃗νbk , b⃗k}, fb]

(In the case of b1 = 1, set b̂1 = 1 and νb1 = 0.)
23: ∀k : ⃗νbk =

(
νbk ν⃗bk

)
./
(
ν⃗bk − νbk1N

)
24: ∀k : ⃗bk =

(
b̂kν⃗bk − νbk b⃗k

)
./
(
ν⃗bk − νbn1N

)
25: ∀k : ⃗νck =

(
1./νc −1./ν⃗ck

).−1

26: ∀k : ⃗ck = ⃗νck ·
(
ĉ./νc −c⃗k./ν⃗ck

)
27: ∀k : ⃗xk = ⃗bk · ⃗ck

28: ∀k : ⃗νxk = |
⃗bk|

2 · ⃗νck + ⃗νbk ·
∣∣∣ ⃗ck

∣∣∣2 + ⃗νbk · ⃗νck

29: ∀k : νxk =
(
1/νqk1N + 1./ ⃗νxk

).−1

30: ∀k : x̂k = νxk ·
(
1/νqkqk + ⃗xk./ ⃗νxk

)
31: ∀k : νxk =< νxk >

Until terminated
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which can be calculated as

⃗νc =
(
1K ⊗ (1./νc) − 1./ν⃗c

).−1 (5.64)

⃗c = ⃗νc ·
(
1K ⊗ (ĉ./νc) − c⃗./ν⃗c

)
, (5.65)

where νc = [νc1 , ..., νcN ]T , ĉ = [ĉ1, ..., ĉN]T ,
[
ν⃗c

]
(n−1)K+k = ν⃗cn,k and

[⃗
c
]
(n−1)K+k = c⃗n,k. Then,

the backward messageM fx→x(x) = N
(
x; ⃗x, ⃗νx

)
with

⃗x = ⃗b · ⃗c (5.66)

⃗νx = | ⃗b|2 · ⃗νc + ⃗νb ·
∣∣∣ ⃗c
∣∣∣2 + ⃗νb · ⃗νc, (5.67)

where ⃗x = [ ⃗xT
1 , ..., ⃗xT

K]T and ⃗νx = [ ⃗ν
T
x1
, ..., ⃗ν

T
xK

]T . The backward message is combined with

the messageMx→ fx(x) (the output of the dash-dotted box in last iteration) i.e.,

νxk =
(
1/νqk1N + 1./ ⃗νxk

).−1
(5.68)

x̂k = νxk ·
(
1/νqkqk + ⃗xk./ ⃗νxk

)
(5.69)

νxk = < νxk > (5.70)

which are then passed to the dash-dotted box as input. This is the end of the backward

message passing.

The approximate inference algorithm is called Bi-UAMP for SMV, and it can be orga-

nized in a more succinct form, which is summarized in Algorithm 7.

5.3 Extension to MMV

In this section, the case of MMV with the model is extended by Bi-UAMP

Y =
K∑

k=1

bkAkC +W (5.71)

where Y is an observation matrix with size M × L, W denotes a white Gaussian noise

matrix with mean 0 and precision β, matrices {Ak} are known, and C with size N × L and
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Figure 5.3: Factor graph representation of (5.75).

b = [b1, ..., bK]T are to be estimated.

Similar to the case of SMV, (5.71) can be reformulated as

Y = AX +W (5.72)

where A = [A1, ...,AK], and X = [x1, ..., xL] with

xl = b ⊗ cl. (5.73)

With the SVD A = UΛV and unitary transformation, the following model is given

R = ΦX +W (5.74)

where R = UHY, Φ = ΛV = UHA and W = UHW. Define zl = Φxl and Z = [z1, ..., zL],

then the joint distribution of the variables is factorized in (5.74) as

p(X,C,b,Z, β|R)

∝ p(C)p(b)p(β)
∏

l
p(rl|zl, β)p(zl|xl)p(xl|b, cl)

≜ fC(C) fb(b) fβ(β)
∏

l
frl(zl, β) fzl(zl, xl) fxl(xl,b, cl).

(5.75)

The factor graph representation for the factorization in (5.75) is depicted in Figure 5.3.

The message updates related to zl, xl and cl are the same as those in Algorithm 7, and

they can be computed in parallel. The major difference lies in the computations of b(b)



5.3. EXTENSION TO MMV 86

Algorithm 8 Bi-UAMP for MMV

Unitary transform: R = UHY = ΦX+W, where AM×NK = UΛV,Φ = UHA = ΛV, and
xl = b ⊗ cl with b = [b1, ..., bK]T and cl = [c1,l, ..., cN,l]T .
Let Φ = [Φ1, ...,ΦK], ϕk = |Φk|

21N , and xl =
[
xT

1,l, ..., x
T
K,l

]T
, k = 1, ...,K, n = 1, ...,N and

l = 1, ..., L.
Initialize: b̂k, νbk = 1, νxk,l = 1, x̂k,l = 0, sl = 0, and β̂ = 1.
Repeat

1: ∀l: νpl =
∑

k ϕkνxk,l

2: ∀l: pl =
∑

kΦkx̂k,l − νpl · sl

3: ∀l: νzl = νpl ./(1 + β̂νpl)
4: ∀l: ẑl = (β̂νpl · rl + pl)./(1 + β̂νpl)
5: β̂ = ML/

∑
l
(∥∥∥rl − ẑl

∥∥∥2
+ 1Tνzl

)
6: ∀l: νsl = 1./

(
νpl + β̂

−11M
)

7: ∀l: sl = νsl ·
(
rl − pl

)
8: ∀l, k: νqk,l = 1/

〈
|ΦH

k |
2νsl

〉
9: ∀l, k: qk,l = x̂k,l + νqk,lΦ

H
k sl

10: ∀l, k : c⃗k,l = qk,lb̂∗k/(|b̂k|
2 + νbk)

11: ∀l, k : ν⃗ck,l = 1Nνqk,l/(|b̂k|
2 + νbk)

12: ∀l : ν⃗cl = 1N ./
∑

k(1N ./ν⃗ck,l)
13: ∀l : c⃗l = ν⃗cl ·

∑
k (⃗ck,l./ν⃗ck,l)

14: ∀n, l : ĉn,l = E[cn,l|{⃗νcl , c⃗l}, fC]
15: ∀n, l : νcn,l = Var[cn,l|{⃗νcl , c⃗l}, fC]
16: ∀l : νcl =< [νc1,l , ..., νcN,l] > 1N , ĉl = [ĉ1,l, ..., ĉN,l]T .
17: ∀l, k : ν⃗bk,l = νqk,l1N ./(|ĉl|

2 + νcl)
18: ∀l, k : b⃗k,l = qk,l · ĉ∗l ./(|ĉl|

2 + νcl)
19: ∀k : ν⃗bk = 1/

∑
l(1T

N(1./ν⃗bk,l))
20: ∀k : b⃗k = ν⃗bk

∑
l(1T

N(b̂k,l./ν⃗bk,l))
21: ∀k : b̂k = E[bk|{⃗νbk , b⃗k}, fb]
22: ∀k : νbk = Var[bk|{⃗νbk , b⃗k}, fb]
23: ∀l, k : ⃗νbk,l =

(
νbk ν⃗bk,l

)
./
(
ν⃗bk,l − νbk1N

)
24: ∀l, k : ⃗bk,l=

(
b̂kν⃗bk,l − νbk b⃗k

)
./
(
ν⃗bk,l − νbk1N

)
25: ∀l, k: ⃗νck,l =

(
1N ./νcl − 1N ./ν⃗ck,l

).−1

26: ∀l, k: ⃗ck,l = ⃗νck,l ·
(
ĉl./νcl − c⃗k,l./ν⃗ck,l

)
27: ∀l, k: ⃗xk,l = ⃗bk,l · ⃗ck,l

28: ∀k, l: ⃗νxk,l = |
⃗bk,l|

2 · ⃗νck,l + ⃗νbk,l ·
∣∣∣ ⃗ck,l

∣∣∣2 + ⃗νbk,l · ⃗νck,l

29: ∀l, k: νxk,l =
(
1/νqk,l1N + 1N ./ν ⃗xk,l

).−1

30: ∀k, l: x̂k,l = νxk,l ·
(
1/νqk,lqk,l + ⃗xk,l./ ⃗νxk,l

)
31: ∀l, k : νxk,l =< νxk,l >

Until terminated
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and b(β), where the messages from fxl and frl ,∀l, should be considered, i.e.,

b(b) ∝
∏

l
M fxl→b(b)M fb→b(b) (5.76)

b(β) ∝
∏

l
M frl→β

(β)M fβ→λ(β). (5.77)

Similar to the SMV case, the message passing algorithm can be derived, which are sum-

marized as Algorithm 8 (Bi-UAMP for MMV).

5.3.1 Discussions and Complexity Analysis

The following remarks and discussions are about Bi-UAMP:

1: In some problems, b1 is known, e.g., b1 = 1. In this case, b̂1 = 1 and νb1 = 0 in

Bi-UAMP are set, which are indicated in Algorithm 7.

2: It is not hard to show that, when b = b1 = 1, Bi-UAMP is reduced to UAMP

(Algorithm 3) exactly.

3: It is interesting that the robustness of Bi-UAMP can be enhanced by simply damp-

ing s, i.e., Line 7 of the SMV Bi-UAMP is changed as

s = (1 − α)s + ανs · (r − p) (5.78)

with α ∈ (0, 1], where α is the damping factor and α = 1 leads to the case without

damping. Accordingly, Line 7 of the MMV Bi-UAMP is changed as sl = (1−α)sl+

ανsl · (r − p).

4: The iterative process can be terminated based on some criterion, e.g., the normal-

ized difference between the estimates of b of two consecutive iterations is smaller

than a threshold, i.e., ∥b̂t − b̂t−1∥2/∥b̂(t)∥2 < ϵ where b̂t is the estimate of b at the tth

iteration and ϵ is a threshold.

5: As the bilinear problem has local minima, the same strategy of restart as in [14] is

used to mitigate the issue of being stuck at local minima. For each restart, {b̂k} with

different values is initialized.
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6: In Bi-UAMP, Bayesian is applied to both b and c (or C in MMV). In contrast,

b is treated as a unknown deterministic variable in BAd-VAMP, and only a point

estimate is involved. As discussed in Section III.A, the Bayesian treatment to b can

make the algorithm more flexible.

7: The computational complexity of Bi-UAMP is analyzed in the following. Bi-

UAMP needs pre-processing, i.e., performing economic SVD for A and unitary

transformation, and the complexity is O(M2NK). It is noted that the pre-processing

can be carried out offline (although this in counting the runtime of Bi-UAMP in the

simulations in Section 5.4 is not assumed). It can be seen from the Bi-UAMP algo-

rithms that, there is no matrix inversion involved, and the most computational inten-

sive parts only involve matrix-vector products. So the complexity of Bi-UAMP per

iteration is O(MNKL) (in the case of SMV, L = 1), which linearly increases with

M, N, K and L. For comparison, BAd-VAMP involves one outer loop and two inner

loops. The whole matrix Ct
l with size N × N in the second inner loop is required

in multiple lines in the algorithm and A(θt
A) is updated in each inner iteration [14].

The computation of the matrix Ct
l leads to a complexity of O(LN3 + KMN) per in-

ner iteration. Line 18 is also computational intensive, which requires a complexity

of O(K2N2) per inner iteration. Also, Line 20 of BAd-VAMP requires a complex-

ity of O(K3) per inner iteration. It is difficult to have a very precise complexity

comparison analytically as the algorithms require different numbers of iterations to

converge. So, in Section 5.4, the runtime of several state-of-the-art algorithms as

in [14] is compared. As demonstrated in Section 5.4, with much shorter runtime,

Bi-UAMP can outperform the state-of-the-art algorithms significantly.

5.3.2 SE-Based Performance Prediction

From the derivation of Bi-UAMP, It can be seen that Bi-UAMP integrates VMP, BP, EP

and UAMP. The incorporation of UAMP enables the approximate inference method to

deal with the most computational intensive part with low complexity and high robustness.

The rigorous performance analysis is difficult, but an attempt to predict its performance

based on UAMP SE heuristically is made. The output variance of the UAMP module in
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the dash-dotted box with respect to the input variance is tracked. However, the variances

are about x instead of b and c (or C in the MMV case). The method is the same as

the SE for (UT)AMP, i.e., qk = xk + wk is modeled as the input to the ”denoiser” (which

corresponds to fx, fb and fc in the factor graph and involves EP and BP), where wk denotes

a Gaussian noise with mean zero and variance τk. However, it is difficult to find an analytic

form for the output variance of the denoiser, which is also happened to (UT)AMP due to

the priors. This can be solved by simulating the denoiser using qk = xk+wk with different

variances of wk as input, so that a ”function” in terms of a table can be established. In our

case, besides the variance of x, the MSE of b and c can also be obtained as ”byproduct”,

which allows us to predict the MSE of b and c, while the variance of x is used to determine

τk analytically. As shown in Section 5.4, the prediction is fairly good in some cases. But,

in some cases, it is not accurate. More accurate and rigorous performance analysis is our

future work.

5.4 Numerical Examples

In this section, the performance of Bi-UAMP is evaluated and compare it with the state-

of-the-art bilinear recovery algorithms including the conventional non-message passing

based algorithm WSS-TLS in [11], and message passing based algorithms BAd-VAMP in

[14] and PC-VAMP in [23]. It is noted that PC-VAMP does not provide an estimate for b.

Performance is evaluated in terms of normalized MSE and runtime. Relevant performance

bounds are also included for reference.

5.4.1 SMV Case

For the SMV case, compressed sensing with matrix uncertainty [11] is taken as an exam-

ple. It is the aim to recover a sparse signal vector c from measurement y = A(b)c + w,

where the measurement matrix is modeled as A(b) =
∑K

k=1 bkAk with b1 = 1, Ak ∈ R
M×N

are known, and the uncertainty parameter vector b = [b2, ..., bK]T is unknown. In addition

the precision of the noise is unknown as well.

In the experiments, K = 11, N = 256, M = 150 are set and the number of nonzero
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Figure 5.4: Compressive sensing with correlated matrices: NMSE of b and c versus
SNR with (a) ρ = 0.3 and (b) ρ = 0.4.

elements in c is 10. The SNR is defined as SNR ≜ E
[
||A(b)c||2

]
/E

[
||w||2

]
. The uncertainty

parameters {b2, ...bk} are drawn from N(0, 1) independently, and the nonzero elements of

sparse vector c are drawn fromN(0, 1) independently as well, which are randomly located

in c. The performance of the methods are evaluated using NMSE(b) ≜ ||b̂ − b||2/||b||2 and

NMSE(c) ≜ ||ĉ − c||2/||c||2, where b̂ and ĉ are the estimates of b and c, respectively. The

performance bounds for the estimation of b and c are included, which are the performance

of two oracle estimators: the MMSE estimator for b with the assumption that c is known,

and the MMSE estimator for c with the assumption that b and the support of c are known.

It is noted that, different from [14], median NMSEs is not used, and to better evaluate

the robustness of the algorithms, the NMSEs are obtained by averaging the results from

all trials. To demonstrate the robustness of Bi-UAMP, tough measurement matrices, e.g.,

correlated matrices, non-zero mean matrices. and ill-conditioned matrices, are focused

on. In addition, Bi-UAMP and BAd-VAMP use a same damping factor of 0.8 to enhance
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Figure 5.6: Compressive sensing with ill-conditioned matrices: NMSE of b and c
versus κ with SNR = 40dB.

their robustness.

5.4.1.1 Correlated Measurement Matrix

All matrices {Ak} are correlated, and Ak is constructed using Ak = CLGkCR, where Gk is

an i.i.d. Gaussian matrix, and CL is an M × M matrix with the (m, n)th element given by

ρ|m−n| where ρ ∈ [0, 1]. Matrix CR is generated in the same way but with a size of N × N.

The parameter ρ controls the correlation of matrix Ak. Figure 5.4 shows the NMSE per-

formance of the algorithms versus SNR, where the correlation parameter ρ = 0.3 in (a)

and ρ = 0.4 in (b). It can be seen that when ρ = 0.3, all the message passing based al-

gorithms PC-VAMP, BAd-VAMP and Bi-UAMP perform well and they are significantly

better than the non-message passing based method WSS-TLS. It can also be seen that
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Figure 5.7: Compressive sensing with non-zero mean matrix: NMSE of b and c versus
µ with SNR = 40dB.

Bi-UAMP delivers a performance which is considerably better than that of PC-VAMP

and BAd-VAMP. With ρ = 0.4, Bi-UAMP still works very well, and it significantly out-

performs BAd-VAMP, PC-VAMP and WSS-TLS. It is noted that as PC-VAMP does not

estimate b, so its performance in the right column is absent.the performance of all algo-

rithms for matrices with different level of correlations by varying the parameter ρ at SNR

= 40dB are further evaluated and the results are shown in Figure 5.5, where it can be seen

that significant performance gaps between all the other algorithms and Bi-UAMP when ρ

is relatively large. The results in Figs. 5.4 and 5.5 demonstrate that Bi-UAMP is more ro-

bust than all the other algorithms with correlated measurement matrices. In Figs. 5.4 and

5.5, the predicted performance based on SE for Bi-UAMP is shown, where the predicted

performance matches the simulated performance fairly well when the matrix correlation

is relatively small.

5.4.1.2 Ill-Conditioned Measurement Matrix

Each matrix Ak is constructed based on the SVD Ak = UkΛkVk where Λk is a singular

value matrix with Λi,i/Λi+1,i+1 = κ1/(M−1) (i.e., the condition number of the matrix is κ).

The NMSE performance of the algorithms versus the condition number is shown in Figure

5.6, where the SNR = 40 dB. It can be seen that Bi-UAMP can significantly outperform

all the other algorithms when κ is relatively large, and BAd-VAMP performs better than

PC-VAMP and WSS-TLS. It also can be seen that the predicated performance is no longer

accurate when κ is large.
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5.4.1.3 Non-Zero Mean Measurement Matrix

The elements of matrix Ak are independently drawn from a non-zero mean Gaussian

distribution N(µ, v). The mean µ measures the derivation from the i. i. d. zero-mean

Gaussian matrix. In the simulations, for {Ak, k = 2 : K}, v = 1, and for A1, v = 20, since

these values perform well over a wide range of problems. The NMSE performance of the

algorithms versus µ is shown in Figure 5.7, where the SNR = 40 dB. It can be seen from

this figure that Bi-UAMP can achieve much better performance compared to WSS-TLS

and BAd-VAMP especially when µ is relatively large. PC-VAMP delivers a competitive

performance compared to Bi-UAMP, while it does not provide an estimate for b and is

also slower than Bi-UAMP as shown in Figure 5.8.
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Figure 5.9: Structured dictionary learning: NMSE(A) and NMSE(C) versus SNR with
(a) ρ = 0 and (b) ρ = 0.1.

5.4.1.4 Runtime Comparison

Figure 5.8 compares the average runtime of all algorithms. In Figure 5.8 (a), correlated

matrices are used with the correlation parameter ρ = 0.3. With SNR = 40 dB, the average

runtime versus different ρ for correlated matrices, different means for non-zero mean

matrices and different condition numbers for ill-conditioned matrices is given in Figure

5.8 (b), (c) and (d), respectively. The results are obtained using MATLAB (R2016b) on

a computer with a 6-core Intel i7 processor. Figure 5.8 shows that, Bi-UAMP is much

faster than BAd-VAMP and WSS-TLS, and it is also considerably faster than PC-VAMP.

5.4.2 MMV Case

The structured dictionary learning (DL) [9] is taken as an example to demonstrate the

performance of Bi-UAMP. The goal of structured DL is to find a structured dictionary
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Figure 5.10: Structured dictionary learning: NMSE(A) and NMSE(C) versus ρ with
SNR = 40dB.

matrix A =
∑K

k=1 bkAk ∈ R
M×N from the training samples Y ∈ RM×L with model Y =

AC +W for some sparse coefficient matrix C ∈ RN×L. In the simulations, It is assumed

square dictionary matrix A with M = N = 100. The length of vector b is large, i.e.,

K = 100, and the number of non-zero elements are set to be 20 in each column of C

(the columns are generated independently) and L = 5 for the training examples. Since

the dictionary matrix A has a structure, it can be learned with a small number of training

samples. Bi-UAMP is run for maximum 100 iterations and 10 restarts. In addition, to

enhance the robustness, a damping factor 0.55 for both Bi-UAMP and BAd-VAMP is

used. In addition, Lines 19-22 in Bi-UAMP are executed once every two iterations. The

performance is evaluated with NMSE of the estimates of A and C. As the pair (A,C)

is recoverable only up to an ambiguity: a scalar ambiguity in the structured case and a

generalized permutation ambiguity in the unstructured [14]. The NMSE is calculated in

the same way as in [14], i.e.,

NMSE(Â) ≜ mind
||A − dÂ||2

||A||2
(5.79)

NMSE(Ĉ) ≜ mind
||C − dĈ||2

||C||2
. (5.80)

Different from [14], the NMSEs are obtained by averaging the results from all trials. To

test the performance and robustness of the algorithms, correlated matrices {Ak} generated

in the same way as in the SMV case are used.
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Figure 5.9 shows the NMSE performance NMSE(Â) and NMSE(Ĉ) versus SNR with

correlation parameter (a) ρ = 0 and (b) ρ = 0.1. It can be seen that when ρ = 0, i.e., {Ak} are

i.i.d. Gaussian, BAd-VAMP and Bi-UAMP have similar performance. When ρ = 0.1, Bi-

UAMP can outperform BAd-UAMP considerably. Figure 5.10 shows the NMSE versus

ρ at SNR = 40dB, where It can be seen that Bi-UAMP can achieve significantly better

performance than BAd-VAMP. From these results, Bi-UAMP is more robust. Figure 5.11

shows the average runtime versus (a) SNR and (b) ρ. Again, the results show that Bi-

UAMP is much faster than BAd-VAMP.

5.5 Conclusions

In this thesis, approximate Bayesian inference for the problem of bilinear recovery is in-

vestigated. A new approximate inference algorithm Bi-UAMP is designed, where UAMP

is integrated with BP, EP and VMP to achieve efficient recovery of the unknown variables.

It can be shown that Bi-UAMP is much more robust and faster than the state-of-the-art

algorithms, leading to significantly better performance.



Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this thesis, based on the UAMP algorithm, solutions for SBL and bilinear recovery

problems are proposed in this thesis, which are developed to be with better efficiency and

robustness compared to other state-of-the-art algorithms. The major contributions of this

thesis are summarized in the following.

In Chapter 2, an overview of SBL and bilinear recovery problem and state-of-the-art

works are surveyed. First of all, AMP is reviewed and various AMP-based techniques

designed for solving the signal recovery problem are illustrated. Then, the SBL algorithm

is detailed. Since SBL uses matrix inversions at each iteration, its complexity is too high

for large-scale problems. After that, AMP and its variants used for the low complexity

implementation of SBL are reviewed. Lastly, the bilinear recovery problem is presented.

Since AMP based algorithms are vulnerable to difficult A matrices. To achieve robust

bilinear recovery, existing works on conventional non-message passing based algorithm

and message passing based algorithms are discussed.

In Chapter 3, VI, AMP and UAMP are described. First of all, a brief introduction of

variational inference is described. Then the AMP algorithm which was developed based

on the loopy BP and has low complexity, is explained. However, the convergence of AMP

cannot be guaranteed. Thus, UAMP algorithm which is more efficient and robust algo-

rithms is introduced. To be more specific, two versions of UAMP algorithm are reviewed

97
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in detail. The empirical SE-based performance prediction for UAMP is investigated. The

state evolution equation is simple but effective. Leveraging the SE of UAMP, how to pre-

dict the performance of UAMP-SBL empirically is also investigated. The UAMP-SBL is

treated as UAMP with a special denoiser, enabling the use of UAMP-SE to predict the

performance of UAMP-SBL

In Chapter 4, leveraging UAMP, UAMP-SBL is proposed for sparse signal recovery

with the framework of structured variational inference, which inherits the low complexity

and robustness of UAMP against a generic measurement matrix. It is demonstrated that,

compared to the state-of-the-art AMP based SBL algorithm, UAMP-SBL can achieve

much better performance in terms of robustness, speed and recovery accuracy.

In Chapter 5, approximate Bayesian inference for the problem of bilinear recovery

is investigated. A novel approximate inference algorithm Bi-UAMP is designed, where

UAMP is integrated with BP, EP and VMP to achieve efficient recovery of unknown

variables. It is shown that Bi-UAMP is much more robust and faster than the other state-

of-the-art algorithms, leading to significantly better performance.

6.2 Future work

This thesis has made successful investigations on the problems of SBL and bilinear re-

covery based on UAMP. However, there are still further works worth investigations.

• The performance of UAMP matches well with the empirical state evolution. A

rigorous theoretical analysis of the state evolution of UAMP is the next step.

• It is discovered in our work that the update of ϵ is crucial for the SBL algorithms

to achieve support-oracle bound and we have proposed an empirical update. Fu-

ture work includes rigorous analyses of the state evolution of UAMP-SBL and the

update mechanism of the shape parameter.

• In Bi-UAMP, future work includes a rigorous analysis of the performance of Bi-

UAMP and generalizing it to handle nonlinear measurements, e.g., quantization.
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By taking advantage of the robustness and low complexity of UAMP, UAMP will be

applied to solving more challenging problems in communications and radar.
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