1,736 research outputs found

    Hamilton decompositions of regular expanders: applications

    Get PDF
    In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This verified a conjecture of Kelly from 1968. In this paper, we derive a number of further consequences of our result on robust outexpanders, the main ones are the following: (i) an undirected analogue of our result on robust outexpanders; (ii) best possible bounds on the size of an optimal packing of edge-disjoint Hamilton cycles in a graph of minimum degree d for a large range of values for d. (iii) a similar result for digraphs of given minimum semidegree; (iv) an approximate version of a conjecture of Nash-Williams on Hamilton decompositions of dense regular graphs; (v) the observation that dense quasi-random graphs are robust outexpanders; (vi) a verification of the `very dense' case of a conjecture of Frieze and Krivelevich on packing edge-disjoint Hamilton cycles in random graphs; (vii) a proof of a conjecture of Erdos on the size of an optimal packing of edge-disjoint Hamilton cycles in a random tournament.Comment: final version, to appear in J. Combinatorial Theory

    Optimal packings of bounded degree trees

    Get PDF
    We prove that if T1,…,Tn is a sequence of bounded degree trees such that Ti has i vertices, then Kn has a decomposition into T1,…,Tn. This shows that the tree packing conjecture of Gyárfás and Lehel from 1976 holds for all bounded degree trees (in fact, we can allow the first o(n) trees to have arbitrary degrees). Similarly, we show that Ringel's conjecture from 1963 holds for all bounded degree trees. We deduce these results from a more general theorem, which yields decompositions of dense quasi-random graphs into suitable families of bounded degree graphs. Our proofs involve Szemerédi's regularity lemma, results on Hamilton decompositions of robust expanders, random walks, iterative absorption as well as a recent blow-up lemma for approximate decompositions

    Optimal packings of bounded degree trees

    Get PDF
    We prove that if T1,…,Tn is a sequence of bounded degree trees such that Ti has i vertices, then Kn has a decomposition into T1,…,Tn. This shows that the tree packing conjecture of Gyárfás and Lehel from 1976 holds for all bounded degree trees (in fact, we can allow the first o(n) trees to have arbitrary degrees). Similarly, we show that Ringel's conjecture from 1963 holds for all bounded degree trees. We deduce these results from a more general theorem, which yields decompositions of dense quasi-random graphs into suitable families of bounded degree graphs. Our proofs involve Szemerédi's regularity lemma, results on Hamilton decompositions of robust expanders, random walks, iterative absorption as well as a recent blow-up lemma for approximate decompositions

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    A bandwidth theorem for approximate decompositions

    Get PDF
    We provide a degree condition on a regular nn-vertex graph GG which ensures the existence of a near optimal packing of any family H\mathcal H of bounded degree nn-vertex kk-chromatic separable graphs into GG. In general, this degree condition is best possible. Here a graph is separable if it has a sublinear separator whose removal results in a set of components of sublinear size. Equivalently, the separability condition can be replaced by that of having small bandwidth. Thus our result can be viewed as a version of the bandwidth theorem of B\"ottcher, Schacht and Taraz in the setting of approximate decompositions. More precisely, let δk\delta_k be the infimum over all δ1/2\delta\ge 1/2 ensuring an approximate KkK_k-decomposition of any sufficiently large regular nn-vertex graph GG of degree at least δn\delta n. Now suppose that GG is an nn-vertex graph which is close to rr-regular for some r(δk+o(1))nr \ge (\delta_k+o(1))n and suppose that H1,,HtH_1,\dots,H_t is a sequence of bounded degree nn-vertex kk-chromatic separable graphs with ie(Hi)(1o(1))e(G)\sum_i e(H_i) \le (1-o(1))e(G). We show that there is an edge-disjoint packing of H1,,HtH_1,\dots,H_t into GG. If the HiH_i are bipartite, then r(1/2+o(1))nr\geq (1/2+o(1))n is sufficient. In particular, this yields an approximate version of the tree packing conjecture in the setting of regular host graphs GG of high degree. Similarly, our result implies approximate versions of the Oberwolfach problem, the Alspach problem and the existence of resolvable designs in the setting of regular host graphs of high degree.Comment: Final version, to appear in the Proceedings of the London Mathematical Societ

    Approximate Hamilton decompositions of robustly expanding regular digraphs

    Get PDF
    We show that every sufficiently large r-regular digraph G which has linear degree and is a robust outexpander has an approximate decomposition into edge-disjoint Hamilton cycles, i.e. G contains a set of r-o(r) edge-disjoint Hamilton cycles. Here G is a robust outexpander if for every set S which is not too small and not too large, the `robust' outneighbourhood of S is a little larger than S. This generalises a result of K\"uhn, Osthus and Treglown on approximate Hamilton decompositions of dense regular oriented graphs. It also generalises a result of Frieze and Krivelevich on approximate Hamilton decompositions of quasirandom (di)graphs. In turn, our result is used as a tool by K\"uhn and Osthus to prove that any sufficiently large r-regular digraph G which has linear degree and is a robust outexpander even has a Hamilton decomposition.Comment: Final version, published in SIAM Journal Discrete Mathematics. 44 pages, 2 figure

    Resolution of the Oberwolfach problem

    Get PDF
    The Oberwolfach problem, posed by Ringel in 1967, asks for a decomposition of K2n+1K_{2n+1} into edge-disjoint copies of a given 22-factor. We show that this can be achieved for all large nn. We actually prove a significantly more general result, which allows for decompositions into more general types of factors. In particular, this also resolves the Hamilton-Waterloo problem for large nn.Comment: 28 page

    Optimal path and cycle decompositions of dense quasirandom graphs

    Get PDF
    Motivated by longstanding conjectures regarding decompositions of graphs into paths and cycles, we prove the following optimal decomposition results for random graphs. Let 0<p<10<p<1 be constant and let GGn,pG\sim G_{n,p}. Let odd(G)odd(G) be the number of odd degree vertices in GG. Then a.a.s. the following hold: (i) GG can be decomposed into Δ(G)/2\lfloor\Delta(G)/2\rfloor cycles and a matching of size odd(G)/2odd(G)/2. (ii) GG can be decomposed into max{odd(G)/2,Δ(G)/2}\max\{odd(G)/2,\lceil\Delta(G)/2\rceil\} paths. (iii) GG can be decomposed into Δ(G)/2\lceil\Delta(G)/2\rceil linear forests. Each of these bounds is best possible. We actually derive (i)--(iii) from `quasirandom' versions of our results. In that context, we also determine the edge chromatic number of a given dense quasirandom graph of even order. For all these results, our main tool is a result on Hamilton decompositions of robust expanders by K\"uhn and Osthus.Comment: Some typos from the first version have been correcte

    Euler tours in hypergraphs

    Get PDF
    We show that a quasirandom kk-uniform hypergraph GG has a tight Euler tour subject to the necessary condition that kk divides all vertex degrees. The case when GG is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the kk-subsets of an nn-set.Comment: version accepted for publication in Combinatoric
    corecore