3,536 research outputs found

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    Bootstrapping Real-world Deployment of Future Internet Architectures

    Full text link
    The past decade has seen many proposals for future Internet architectures. Most of these proposals require substantial changes to the current networking infrastructure and end-user devices, resulting in a failure to move from theory to real-world deployment. This paper describes one possible strategy for bootstrapping the initial deployment of future Internet architectures by focusing on providing high availability as an incentive for early adopters. Through large-scale simulation and real-world implementation, we show that with only a small number of adopting ISPs, customers can obtain high availability guarantees. We discuss design, implementation, and evaluation of an availability device that allows customers to bridge into the future Internet architecture without modifications to their existing infrastructure

    Password Based a Generalize Robust Security System Design Using Neural Network

    Get PDF
    Among the various means of available resource protection including biometrics, password based system is most simple, user friendly, cost effective and commonly used. But this method having high sensitivity with attacks. Most of the advanced methods for authentication based on password encrypt the contents of password before storing or transmitting in physical domain. But all conventional cryptographic based encryption methods are having its own limitations, generally either in terms of complexity or in terms of efficiency. Multi-application usability of password today forcing users to have a proper memory aids. Which itself degrades the level of security. In this paper a method to exploit the artificial neural network to develop the more secure means of authentication, which is more efficient in providing the authentication, at the same time simple in design, has given. Apart from protection, a step toward perfect security has taken by adding the feature of intruder detection along with the protection system. This is possible by analysis of several logical parameters associated with the user activities. A new method of designing the security system centrally based on neural network with intrusion detection capability to handles the challenges available with present solutions, for any kind of resource has presented

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table
    • …
    corecore