4 research outputs found

    Counting hypergraph matchings up to uniqueness threshold

    Get PDF
    We study the problem of approximately counting matchings in hypergraphs of bounded maximum degree and maximum size of hyperedges. With an activity parameter λ\lambda, each matching MM is assigned a weight λ∣M∣\lambda^{|M|}. The counting problem is formulated as computing a partition function that gives the sum of the weights of all matchings in a hypergraph. This problem unifies two extensively studied statistical physics models in approximate counting: the hardcore model (graph independent sets) and the monomer-dimer model (graph matchings). For this model, the critical activity λc=ddk(d−1)d+1\lambda_c= \frac{d^d}{k (d-1)^{d+1}} is the threshold for the uniqueness of Gibbs measures on the infinite (d+1)(d+1)-uniform (k+1)(k+1)-regular hypertree. Consider hypergraphs of maximum degree at most k+1k+1 and maximum size of hyperedges at most d+1d+1. We show that when λ<λc\lambda < \lambda_c, there is an FPTAS for computing the partition function; and when λ=λc\lambda = \lambda_c, there is a PTAS for computing the log-partition function. These algorithms are based on the decay of correlation (strong spatial mixing) property of Gibbs distributions. When λ>2λc\lambda > 2\lambda_c, there is no PRAS for the partition function or the log-partition function unless NP==RP. Towards obtaining a sharp transition of computational complexity of approximate counting, we study the local convergence from a sequence of finite hypergraphs to the infinite lattice with specified symmetry. We show a surprising connection between the local convergence and the reversibility of a natural random walk. This leads us to a barrier for the hardness result: The non-uniqueness of infinite Gibbs measure is not realizable by any finite gadgets

    Random partition models and complementary clustering of Anglo-Saxon place-names

    Full text link

    Approximate Counting of Matchings in Sparse Uniform Hypergraphs

    No full text
    In this paper we give a fully polynomial randomized approximation scheme (FPRAS) for the number of matchings in k-uniform hypergraphs whose intersection graphs contain few claws. Our method gives a generalization of the canonical path method of Jerrum and Sinclair to hypergraphs satisfying a local restriction. The proof depends on an application of the Euler tour technique for the canonical paths of the underlying Markov chains. On the other hand, we prove that it is NP-hard to approximate the number of matchings even for the class of 2-regular, linear, k-uniform hypergraphs, for all k ≥ 6, without the above restriction.
    corecore