13 research outputs found

    Approximate Clustering with Same-Cluster Queries

    Get PDF
    Ashtiani et al. proposed a Semi-Supervised Active Clustering framework (SSAC), where the learner is allowed to make adaptive queries to a domain expert. The queries are of the kind "do two given points belong to the same optimal cluster?", where the answers to these queries are assumed to be consistent with a unique optimal solution. There are many clustering contexts where such same cluster queries are feasible. Ashtiani et al. exhibited the power of such queries by showing that any instance of the k-means clustering problem, with additional margin assumption, can be solved efficiently if one is allowed to make O(k^2 log{k} + k log{n}) same-cluster queries. This is interesting since the k-means problem, even with the margin assumption, is NP-hard. In this paper, we extend the work of Ashtiani et al. to the approximation setting by showing that a few of such same-cluster queries enables one to get a polynomial-time (1+eps)-approximation algorithm for the k-means problem without any margin assumption on the input dataset. Again, this is interesting since the k-means problem is NP-hard to approximate within a factor (1+c) for a fixed constant 0 < c < 1. The number of same-cluster queries used by the algorithm is poly(k/eps) which is independent of the size n of the dataset. Our algorithm is based on the D^2-sampling technique, also known as the k-means++ seeding algorithm. We also give a conditional lower bound on the number of same-cluster queries showing that if the Exponential Time Hypothesis (ETH) holds, then any such efficient query algorithm needs to make Omega (k/poly log k) same-cluster queries. Our algorithm can be extended for the case where the query answers are wrong with some bounded probability. Another result we show for the k-means++ seeding is that a small modification of the k-means++ seeding within the SSAC framework converts it to a constant factor approximation algorithm instead of the well known O(log k)-approximation algorithm

    Towards Fast Computation of Certified Robustness for ReLU Networks

    Full text link
    Verifying the robustness property of a general Rectified Linear Unit (ReLU) network is an NP-complete problem [Katz, Barrett, Dill, Julian and Kochenderfer CAV17]. Although finding the exact minimum adversarial distortion is hard, giving a certified lower bound of the minimum distortion is possible. Current available methods of computing such a bound are either time-consuming or delivering low quality bounds that are too loose to be useful. In this paper, we exploit the special structure of ReLU networks and provide two computationally efficient algorithms Fast-Lin and Fast-Lip that are able to certify non-trivial lower bounds of minimum distortions, by bounding the ReLU units with appropriate linear functions Fast-Lin, or by bounding the local Lipschitz constant Fast-Lip. Experiments show that (1) our proposed methods deliver bounds close to (the gap is 2-3X) exact minimum distortion found by Reluplex in small MNIST networks while our algorithms are more than 10,000 times faster; (2) our methods deliver similar quality of bounds (the gap is within 35% and usually around 10%; sometimes our bounds are even better) for larger networks compared to the methods based on solving linear programming problems but our algorithms are 33-14,000 times faster; (3) our method is capable of solving large MNIST and CIFAR networks up to 7 layers with more than 10,000 neurons within tens of seconds on a single CPU core. In addition, we show that, in fact, there is no polynomial time algorithm that can approximately find the minimum 1\ell_1 adversarial distortion of a ReLU network with a 0.99lnn0.99\ln n approximation ratio unless NP\mathsf{NP}=P\mathsf{P}, where nn is the number of neurons in the network.Comment: Tsui-Wei Weng and Huan Zhang contributed equall
    corecore