1,906 research outputs found

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    Reducing the Effects of Detrimental Instances

    Full text link
    Not all instances in a data set are equally beneficial for inducing a model of the data. Some instances (such as outliers or noise) can be detrimental. However, at least initially, the instances in a data set are generally considered equally in machine learning algorithms. Many current approaches for handling noisy and detrimental instances make a binary decision about whether an instance is detrimental or not. In this paper, we 1) extend this paradigm by weighting the instances on a continuous scale and 2) present a methodology for measuring how detrimental an instance may be for inducing a model of the data. We call our method of identifying and weighting detrimental instances reduced detrimental instance learning (RDIL). We examine RIDL on a set of 54 data sets and 5 learning algorithms and compare RIDL with other weighting and filtering approaches. RDIL is especially useful for learning algorithms where every instance can affect the classification boundary and the training instances are considered individually, such as multilayer perceptrons trained with backpropagation (MLPs). Our results also suggest that a more accurate estimate of which instances are detrimental can have a significant positive impact for handling them.Comment: 6 pages, 5 tables, 2 figures. arXiv admin note: substantial text overlap with arXiv:1403.189

    Novel approach to FM-based device free passive indoor localization through neural networks

    Get PDF
    Indoor Localization has been one of the most extensively researched topics for the past couple of years with a recent surge in a specific area of Device-free localization in wireless environments. Particularly FM-radio based technologies are being been preferred over WiFi-based technologies due to better penetration indoors and free availability. The major challenges for obtaining a consistent and highly accurate indoor FM based system are susceptibility to human presence, multipath fading and environmental changes. Our research works around these limitations and utilizes the environment itself to establish stronger fingerprints and thus creating a robust localization system. This novel thesis also investigates the feasibility of using neural networks to solve the problem of accuracy degradation when using a single passive receiver across multiple ambient FM radio stations. The system achieves high fidelity and temporal stability to the tunes of 95% by utilizing pattern recognition techniques for the multiple channel spectra

    Bayesian Regularized Neural Networks for Small n Big p Data

    Get PDF
    Artificial neural networks (ANN) mimic the function of the human brain and they have the capability to implement massively parallel computations for mapping, function approximation, classification, and pattern recognition processing. ANN can capture the highly nonlinear associations between inputs (predictors) and target (responses) variables and can adaptively learn the complex functional forms. Like other parametric and nonparametric methods, such as kernel regression and smoothing splines, ANNs can introduce overfitting (in particular with highly-dimensional data, such as genome wide association -GWAS-, microarray data etc.) and resulting predictions can be outside the range of the training data. Regularization (shrinkage) in ANN allows bias of parameter estimates towards what are considered to be probable. Most common techniques of regularizations techniques in ANN are the Bayesian regularization (BR) and the early stopping methods. Early stopping is effectively limiting the used weights in the network and thus imposes regularization, effectively lowering the Vapnik-Chervonenkis dimension. In Bayesian regularized ANN (BRANN), the regularization techniques involve imposing certain prior distributions on the model parameters and penalizes large weights in anticipation of achieving smoother mapping
    • …
    corecore