2 research outputs found

    Topological optimization of fault-tolerant networks meeting reliability constraints.

    Get PDF
    The relevant entities in a network are its nodes, and the links between them. In general, the goal is to achieve a reliable communication between dierent pairs of nodes. Examples of applications are telephonic services, data communication, transportation systems, computer systems, electric networks and control systems. The predominant criterion for the design of a reliable and survivable system is the minimum-cost in most contexts. An attractive topic for research is to consider a minimum-cost topological optimization design meeting a reliability threshold. Even though the cost has been the primary factor in the network design, recently, the network reliability has grown in relevance. With the progress of Fiber-To-the-Home (FTTH) services for the backbone design in most current networks, combined with the rapid development of network communication technologies, and the explosive increase of applications over the Internet infrastructure, the network reliability has supreme importance, for traditional communication systems but for the defense, business and energy, and emergent elds such as trusted computing, cloud computing, Internet of Things (IoT) and Next Generation Networks (NGN), the fault tolerance is critical. We can distinguish two main problems to address in the analysis and design of network topologies. First, the robustness is usually met under multi-path generation. Therefore, we require certain number of node-disjoint paths between distinguished nodes, called terminals. The second problem is to meet a minimum-reliability requirement in a hostile environment, using the fact that both nodes and links may fail. Both problems are strongly related, where sometimes the minimum-cost topology already meets the reliability threshold, or it should be discarded, and the design is challenging. This thesis deals with a topological optimization problem meeting reliability constraints. The Generalized Steiner Problem with Node-Connectivity Constraints and Hostile Reliability (GSP-NCHR) is introduced, and it is an extension of the well-known Generalized Steiner Problem (GSP). Since GSP-NCHR subsumes the GSP, it belongs to the class of N P-Hard problems. A full chapter is dedicated to the hardness of the GSP-NCHR, and an analysis of particular sub-problems. Here, the GSP-NCHR is addressed approximately. Our goal is to meet the topological x requirements intrinsically considered in the GSP-NCHR, and then test if the resulting topology meets a minimum reliability constraint. As a consequence a hybrid heuristic is proposed, that considers a Greedy Randomized construction phase followed by a Variable Neighborhood Search (VNS) in a second phase. VNS is a powerful method that combines local searches that consider dierent neighborhood structures, and it was used to provide good solutions in several hard combinatorial optimization problems. Since the reliability evaluation in the hostile model belongs to the class of N P-Hard problems, a pointwise reliability estimation was adopted. Here we considered Recursive Variance Reduction method (RVR), since an exact reliability evaluation is prohibitive for large-sized networks. The experimental analysis was carried out on a wide family of instances adapted from travel salesman problem library (TSPLIB), for heterogeneous networks with dierent characteristics and topologies, including up to 400 nodes. The numerical results show acceptable CPU-times and locally-optimum solutions with good quality, meeting network reliability constraints as well.En una red las entidades relevantes son nodos y conexiones entre nodos, y en general el principal objetivo buscado es lograr una comunicaci贸n segura entre nodos de esta red, ya sea para redes telef贸nicas y de comunicaci贸n de datos, de transporte, arquitectura de computadores, redes de energ铆a el茅ctrica o sistemas de comando y control. La optimizaci贸n relativa al costo de una red y la contabilidad de la misma, relacionada con la supervivencia de esta, son los criterios predominantes en la selecci贸n de una soluci贸n para la mayor parte de los contextos. Un tema interesante que ha atra铆do un gran esfuerzo es c贸mo dise帽ar topolog铆as de red, con un uso m铆nimo de recursos de red en t茅rminos de costo que brinde una garant铆a de contabilidad. A pesar que por a帽os el costo ha sido el factor primario, la contabilidad ha ganado r谩pidamente en relevancia. Con sistemas de transmisi贸n de fibra 贸ptica de alta capacidad formando la columna vertebral de la mayor铆a de las redes actuales y junto con el r谩pido desarrollo de la tecnolog铆a de comunicaci贸n de redes y el crecimiento explosivo de las aplicaciones de Internet, la contabilidad de la red parece cada vez m谩s importante, tanto para 谩reas tradicionales como la industria de defensa, finanzas y energ铆a, y 谩reas emergentes como la computaci贸n contable, la computaci贸n en la nube, internet de las cosas (IoT) y la pr贸xima generaci贸n de Internet, la supervivencia del tr谩fico por sobre los fallos de red se ha convertido a煤n en m谩s cr铆tica. En ese sentido podemos diferenciar, a grandes rasgos, dos de los principales problemas a resolver en el an谩lisis y dise帽o de topolog铆as de red. Primeramente la obtenci贸n de una red 贸ptima en alg煤n sentido, siendo este definido por ejemplo mediante la obtenci贸n de la m谩xima cantidad posible de caminos disjuntos entre pares de nodos, esto sujeto a determinadas restricciones definidas seg煤n el contexto. El segundo problema es la evaluaci贸n de la contabilidad de la red en funci贸n de las contabilidades elementales de los nodos y conexiones entre nodos que componen la red. Estas contabilidades elementales son probabilidades de operaci贸n asociadas a los nodos y conexiones entre nodos. Ambos problemas est谩n fuertemente relacionados, pudiendo tener que comparar en el proceso de b煤squeda de redes 贸ptimas la contabilidad entre soluciones candidatas, o luego de obtener una soluci贸n candidata tener que evaluar la contabilidad de la misma y de esta forma descartarla o no. El presente trabajo se centra en la resoluci贸n del problema enfocado en ambos puntos planteados. Para ello modelamos el problema de dise帽o de la topolog铆a de red sobre la base de un modelo de nido como Generalized Steiner Problem with Node-Connectivity Constraints and Hostile Reliability (GSP-NCHR) extensi贸n del m谩s conocido Generalized Steiner Problem (GSP). El presente problema es NP-duro, dedicamos un cap铆tulo para presentar resultados te贸ricos que lo demuestran. Nuestro objetivo es atacar de forma aproximada el modelo GSP-NCHR de tal modo de poder resolver la optimizaci贸n de la red y luego medir la contabilidad de la soluci贸n obtenida. Para ello optamos por desarrollar la metaheur铆stica Variable Neighborhood Search (VNS). VNS es un m茅todo potente que combina el uso de b煤squedas locales basadas en distintas definiciones de vecindad, el cual ha sido utilizado para obtener soluciones de buena calidad en distintos problemas de optimizaci贸n combinatoria. En lo referente al c谩lculo de contabilidad de la red, nuestro modelo GSP-NCHR pertenece a la clase NP-duro, por eso desarrollamos Recursive Variance Reduction (RVR) como m茅todo de simulaci贸n, ya que la evaluaci贸n exacta de esta medida para redes de tama帽o considerable es impracticable. Las pruebas experimentales fueron realizadas utilizando un conjunto amplio de casos de prueba adaptados de la librer铆a travel salesman problem (TSPLIB), de heterog茅neas topolog铆as con diferentes caracter铆sticas, incluyendo instancias de hasta 400 nodos. Los resultados obtenidos indican tiempos de c贸mputo altamente aceptables acompa帽ados de 贸ptimos locales de buena calidad

    Approximate algorithms for survivable network design

    No full text
    Along with the rapid development of network communication technology and the explosive growth of the internet applications, network reliability appears increasingly important to both traditional areas such as defense, finance and power industry, and emerging areas such as trusted computing, cloud computing and next-generation Internet. An interesting subject that has attracted great effort is how to design network topologies with a minimum network resource usage in terms of cost that provides a relibility guarantee. As problems on this subject, like most other network optimization problems, are well-known NP-hard even in their simplest form, design of effective solutions with a guaranteed approximation ratio from the optimal solution has been a major research focus of great significance for both theory and applications. This survery summarizes major existing techniques and results for solving some central problems in designing survivable networks including the minimal connected subgraph problem, the survivable network design problem and the Steiner minimal network problem.Hong She
    corecore