17,430 research outputs found

    Bounds of restricted isometry constants in extreme asymptotics: formulae for Gaussian matrices

    Full text link
    Restricted Isometry Constants (RICs) provide a measure of how far from an isometry a matrix can be when acting on sparse vectors. This, and related quantities, provide a mechanism by which standard eigen-analysis can be applied to topics relying on sparsity. RIC bounds have been presented for a variety of random matrices and matrix dimension and sparsity ranges. We provide explicitly formulae for RIC bounds, of n by N Gaussian matrices with sparsity k, in three settings: a) n/N fixed and k/n approaching zero, b) k/n fixed and n/N approaching zero, and c) n/N approaching zero with k/n decaying inverse logrithmically in N/n; in these three settings the RICs a) decay to zero, b) become unbounded (or approach inherent bounds), and c) approach a non-zero constant. Implications of these results for RIC based analysis of compressed sensing algorithms are presented.Comment: 40 pages, 5 figure

    The out-equilibrium 2D Ising spin glass: almost, but not quite, a free-field theory

    Get PDF
    We consider the spatial correlation function of the two-dimensional Ising spin glass under out-equilibrium conditions. We pay special attention to the scaling limit reached upon approaching zero temperature. The field-theory of a non-interacting field makes a surprisingly good job at describing the spatial shape of the correlation function of the out-equilibrium Edwards-Anderson Ising model in two dimensions.Comment: 20 pages + 5 Figure

    Minimum output entropy of a non-Gaussian quantum channel

    Get PDF
    We introduce a model of non-Gaussian quantum channel that stems from the combination of two physically relevant processes occurring in open quantum systems, namely amplitude damping and dephasing. For it we find input states approaching zero output entropy, while respecting the input energy constraint. These states fully exploit the infinite dimensionality of the Hilbert space. Upon truncation of the latter, the minimum output entropy remains finite and optimal input states for such a case are conjectured thanks to numerical evidences

    Nonclassical Radiation from Thermal Cavities in the Ultrastrong Coupling Regime

    Full text link
    Thermal or chaotic light sources emit radiation characterized by a slightly enhanced probability of emitting photons in bunches, described by a zero-delay second-order correlation function g(2)(0)=2g^{(2)}(0) = 2. Here we explore photon-coincidence counting statistics of thermal cavities in the ultrastrong coupling regime, where the atom-cavity coupling rate becomes comparable to the cavity resonance frequency. We find that, depending on the system temperature and coupling rate, thermal photons escaping the cavity can display very different statistical behaviors, characterised by second-order correlation functions approaching zero or greatly exceeding two.Comment: results on frequency resolved photon correlations added, to appear in Phys. Rev. Let
    corecore