5 research outputs found

    Transmit Precoding for MIMO Systems with Partial CSI and Discrete-Constellation Inputs

    Get PDF
    In this paper, we consider the transmit linear precoding problem for MIMO systems with discrete-constellation inputs. We assume that the receiver has perfect channel state information (CSI) and the transmitter only has partial CSI, namely, the channel covariance information. We first consider MIMO systems over frequency-flat fading channels. We design the optimal linear precoder based on direct maximization of mutual information over the MIMO channels with discrete-constellation inputs. It turns out that the optimal linear precoder is a non-diagonal non-unitary matrix. Then, we consider MIMO systems over frequency selective fading channels via extending our method to MIMO-OFDM systems. To keep reasonable computational complexity of solving the linear precoding matrix, we propose a sub-optimal approach to restrict the precoding matrix as a block-diagonal matrix. This approach has near-optimal performance when we integrate it with a properly chosen interleaver. Numerical examples show that for MIMO systems over frequency flat fading channels, our proposed optimal linear precoder enjoys 6-9 dB gain compared to the same system without linear precoder. For MIMO-OFDM systems, our reduced-complexity sub-optimal linear precoder captures 3-6 dB gain compared to the same system with no precoding. Moreover, for those MIMO systems employing a linear precoder designed based on Gaussian inputs with gap approximation technique for discrete-constellation inputs, significant loss may occur when the signal-to-noise ratio is larger than 0 dB

    Exploiting Multi-Antennas for Opportunistic Spectrum Sharing in Cognitive Radio Networks

    Full text link
    In cognitive radio (CR) networks, there are scenarios where the secondary (lower priority) users intend to communicate with each other by opportunistically utilizing the transmit spectrum originally allocated to the existing primary (higher priority) users. For such a scenario, a secondary user usually has to trade off between two conflicting goals at the same time: one is to maximize its own transmit throughput; and the other is to minimize the amount of interference it produces at each primary receiver. In this paper, we study this fundamental tradeoff from an information-theoretic perspective by characterizing the secondary user's channel capacity under both its own transmit-power constraint as well as a set of interference-power constraints each imposed at one of the primary receivers. In particular, this paper exploits multi-antennas at the secondary transmitter to effectively balance between spatial multiplexing for the secondary transmission and interference avoidance at the primary receivers. Convex optimization techniques are used to design algorithms for the optimal secondary transmit spatial spectrum that achieves the capacity of the secondary transmission. Suboptimal solutions for ease of implementation are also presented and their performances are compared with the optimal solution. Furthermore, algorithms developed for the single-channel transmission are also extended to the case of multi-channel transmission whereby the secondary user is able to achieve opportunistic spectrum sharing via transmit adaptations not only in space, but in time and frequency domains as well.Comment: Extension of IEEE PIMRC 2007. 35 pages, 6 figures. Submitted to IEEE Journal of Special Topics in Signal Processing, special issue on Signal Processing and Networking for Dynamic Spectrum Acces

    Approaching MIMO-OFDM Capacity with Per Antenna Power and Rate Feedback

    No full text
    corecore