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Transmit Precoding for MIMO Systems with Partial CSI
and Discrete-Constellation Inputs

Chengshan Xiao and Yahong Rosa Zheng

Department of Electrical & Computer Engineering
Missouri University of Science and Technology, Rolla, MO 65409, USA

Abstract— In this paper, we consider the transmit linear
precoding problem for MIMO systems with discrete-constellation
inputs. We assume that the receiver has perfect channel state
information (CSI) and the transmitter only has partial CSI,
namely, the channel covariance information. We first consider
MIMO systems over frequency-flat fading channels. We design
the optimal linear precoder based on direct maximization of
mutual information over the MIMO channels with discrete-
constellation inputs. It turns out that the optimal linear precoder
is a non-diagonal non-unitary matrix. Then, we consider MIMO
systems over frequency selective fading channels via extending
our method to MIMO-OFDM systems. To keep reasonable
computational complexity of solving the linear precoding matrix,
we propose a sub-optimal approach to restrict the precoding
matrix as a block-diagonal matrix. This approach has near-
optimal performance when we integrate it with a properly chosen
interleaver. Numerical examples show that for MIMO systems
over frequency flat fading channels, our proposed optimal linear
precoder enjoys 6-9 dB gain compared to the same system with-
out linear precoder. For MIMO-OFDM systems, our reduced-
complexity sub-optimal linear precoder captures 3-6 dB gain
compared to the same system with no precoding. Moreover,
for those MIMO systems employing a linear precoder designed
based on Gaussian inputs with gap approximation technique for
discrete-constellation inputs, significant loss may occur when the
signal-to-noise ratio is larger than 0 dB.

I. INTRODUCTION

Transmit linear precoding has been a very active research
topic in the last few years, see [1]-[10] and the references
therein. The existing precoder design methods may be classi-
fied into two groups: (i) diversity oriented designs; and (ii)
transmission rate oriented designs. The first group usually
employs the pairwise error probability analysis technique,
which has been used in the space-time trellis coding [11],
to maximize the diversity order through the rank criterion
developed in [11]. This approach can achieve the steepest
asymptotic slope (highest diversity order) on the error proba-
bility versus SNR curve, however, it may not obtain the highest
possible coding gain [12]. The second group often utilizes
the Gaussian-input channel capacity (ergodic capacity and/or
outage capacity) as design criteria to optimize the precoders.
However, Gaussian inputs are too idealistic to be implemented
in practical communication systems, and replacing Gaussian
inputs by realistic discrete-constellation inputs for the designed
precoders will often lead to significant performance degrada-
tion [13].

Very recently, linear precoding methods were investigated
in [14]-[17] based on mutual information with discrete-

constellation inputs. In [14], optimal precoder design rules
were derived for binary phase-shift keying (BPSK) signaling
for bit-interleaved coded modulation (BICM) [18] on additive
white Gaussian noise (AWGN) channels. However, it was
pointed out in [14] that the derived design rules are somewhat
cumbersome to be extended to higher-order constellations, and
developing a general optimal scheme is a challenging topic
for further research. Both [15] and [16] employed unitary
matrices to maximize diversity order for block-fading channels
to improve outage performance. It was shown that the unitary
matrices can achieve 1-3 dB diversity gain at 10−3 outage
level when the outer code rate is 0.75, and there is no diversity
gain if the outer code rate is equal to or less than 0.5 for all
SNRs [16]. In [17], a generalized linear precoder was proposed
for maximizing the mutual information of vector Gaussian
channels with finite discrete inputs, where the channel state
information was assumed to be perfectly available at both the
transmitter and receiver.

In this paper, we study the design of optimal linear pre-
coder for spatially correlated MIMO systems with discrete-
constellation inputs, where the receive knows perfect channel
state information (CSI) and the transmitter only knows partial
CSI.

II. GAUSSIAN INPUT-BASED RESULTS REVISITED

Provided a MIMO system over frequency flat fading with
Nt transmit and Nr receive antennas, the baseband complex
system model is given by

y = HGx + v (1)

where y ∈ C
Nr×1 is the received signal vector; x ∈ C

Nt×1 is
the transmitted signal vector, assumed to have independent
and identically distributed (i.i.d.) unit-energy entries, i.e.,
E

{
xxh

}
= I with I being identity matrix and (·)h denoting

transpose conjugate; H ∈ C
Nr×Nt is the zero-mean channel

matrix; G ∈ C
Nt×Nt is the linear precoder with an average

power constraint trace
(
GGh

)
≤ Nt; and v ∈ C

Nr×1 is
the channel noise vector, assumed i.i.d. complex Gaussian
∼ CN (0, σ2I).

A. Capacity-Achieving Linear Precoder for Gaussian Inputs

When the channel matrix H is perfectly known at the
receiver, and the channel covariance Ψ

TX
� E{HhH} is

known at the transmitter, then the capacity-achieving inputs x
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are zero-mean Gaussian distributed [19], [20], and the channel
capacity is given by

Ccap = max
G: trace(GGh)≤Nt

E

[
log2det

(
I+

1
σ2Nt

HGGhHh

)]

bits/s/Hz. (2)

The solution G to (2) is well-known given by [21]-[23]

G = UD1/2 (3)

where U is the unitary matrix obtained via the singular
value decomposition (SVD) of the channel covariance ma-
trix ΨTX

= UΣUh with Σ being a diagonal matrix; and
D=diag {d1, d2, · · · , dNt

} is the optimal power allocation
function obtained by iterative algorithms [22], [23].

It is noted that the columns of U correspond to the spatial
directions of the linear precoder G, and the diagonal elements
of D signify the transmit powers allocated onto each of these
spatial directions. Apparently, the spatial directions are the
same as the eigenvectors of the channel covariance matrix.

B. Gap Approximation Technique for Finite Discrete Inputs

Although Gaussian inputs are capacity-achieving signaling,
they can never be realized in practice. The inputs are usually
drawn from finite discrete constellations such as quadrature
amplitude modulation (QAM), pulse amplitude modulation
(PAM) and/or phase shift keying (PSK) modulation, which
may significantly depart from the Gaussian signaling. How-
ever, very limited study has been done to date for linear
precoders that maximize the mutual information over MIMO
fading channels with finite discrete inputs.

In the literature, a common approach is to utilize the
Gaussian-input channel capacity formula as the design criteria
to optimize the precoders, then replace the theoretical Gaussian
inputs by practical finite constellation inputs for transmis-
sion. The reasons of assuming Gaussian inputs for precoder
optimizations are two folds: first, it is more convenient in
mathematics due to the elegant capacity formula; second,
it was reported in [24] for fixed channels and in [25] for
fading channels that there is a constant power gap between
the Shannon capacity (with Gaussian inputs) and the spectral
efficiency of realistic constellations such as QAM and PAM
constellations. This constant gap is often referred to as “gap
approximation” [26], [27]. This constant gap is indeed correct
in the context of [24], [25], however, discrepancies may occur
if it is directly employed as a basis for designing power
allocation policies and linear precoders [13], [17] when the
inputs are taken from discrete constellations.

C. Difference Between Gaussian and Discrete Inputs

Although the precoder structure G = UD1/2, i.e., the prod-
uct of optimal transmit directional matrix and power allocation
diagonal matrix, is optimal for Gaussian inputs. This structure
is no longer optimal to maximize the mutual information
for channels with discrete-constellation inputs. We will show
that an optimal precoder for discrete-constellation inputs is a
general non-unitary non-diagonal matrix, which is solved via
an iterative algorithm.

III. MUTUAL INFORMATION FOR DISCRETE INPUTS

We consider the MIMO system described in (1) with x
drawn from conventional equiprobable discrete constellations
such as M -ary QAM, PSK or PAM, etc. Where M is the
number of points in the signal constellation. The mutual
information between x and y with H and G known at the
receiver, per data symbol interval, is I(x;y|H,G) given by
(4) at the top of next page, where ‖·‖ denotes Euclidean norm
of a vector, x contains Nt symbols, which are independently
taken from the M -ary signal constellation.

The proof of (4) can be done by extending the mutual
information of a discrete memoryless channel to the case of
continuous-valued output [28, Page 33].

The objective is to develop an algorithm for solving the lin-
ear precoder matrix G, under power constraint trace

(
GGh

)
=

Nt, by maximizing the mutual information I(x;y|H,G) with
the transmitter knowing ΨTX

.
The above constrained maximization problem can be written

as the unconstrained maximization of

J = I(x;y|H,G)+λ
[
trace

(
GGh

)
− Nt

]
(5)

where λ is a Lagrange multiplier, which is chosen to satisfy
the power constraint, and the solution is stated in the following
proposition.

Proposition: The optimal linear precoder G, which max-
imizes the mutual information given by (4), satisfies the
following equation

log2 e

σ2
· EH

{
HhHGΣe

}
+ λ · G = 0 (6)

where Σe is the minimum mean square error (MMSE) matrix
given by (7) at the top of next page.

Proof: This proposition can be proved by employing the
techniques developed in [13], [29], [30] for derivatives of
mutual information, and the techniques developed in [31] for
complex-valued matrix differentiation. Details are omitted for
brevity.

From (6) and (7), we can easily conclude that G is very
likely to be a general Nt ×Nt matrix to maximize the mutual
information under the power constraint.

It is pointed out that it is very difficult to find a closed-form
solution (if any) to (6) for G, because Σe is also a function
of G. We developed an iterative algorithm employing gradient
descent method [32] to solve (6) via utilizing the partial
derivative ∂

G∗ I(x;y|H,G), which is equal to the first term at
the left hand side of (6). For a practical wireless system, Nt

is usually not larger than 4, therefore, the computational com-
plexity of the iterative algorithm is reasonable. Furthermore,
the computation of the MMSE matrix Σe involves multidi-
mensional integration with integration kernel exp

(
−‖v‖2

2σ2

)
,

where v ∈ C
Nr×1 is an AWGN vector. The integration

can be computed by using Gauss-Hermite quadrature rules
[33], which is directly employed for the case when Nr = 1.
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I(x;y|H,G) = Ntlog2M− 1
MNt

MNt∑
m=1

EH

⎧⎨
⎩Ev

⎡
⎣log2

MNt∑
k=1

exp
(−‖HG(xm−xk)+v‖2+‖v‖2

σ2

)⎤⎦
⎫⎬
⎭ (4)

Σe = E
{

[x−E(x|y,H,G)] [x−E(x|y,H,G)]h
}

= I
Nt

− 1

(πσ2)Nr M Nt

∫
y

[∑MNt

l=1 xl exp
(
−‖y−HGxl‖2

σ2

)] [∑MNt

k=1 xh
k exp

(
−‖y−HGxk‖2

σ2

)]
∑MNt

m=1 exp
(
−‖y−HGxm‖2

σ2

) dy. (7)

However, when Nr is larger than 1, we extend the Gauss-
Hermit quadrature rules into multidimensional cases with
some algebraic manipulations. Details are omitted for brevity.

IV. EXTENSION TO MIMO-OFDM SYSTEMS

In this section, we extend our linear precoding method,
which is proposed for MIMO systems over frequency flat
fading, to MIMO-OFDM systems [34], which are able to
handle frequency selective fading efficiently.

Consider a baseband MIMO-OFDM system described by

Y = HGX + V (8)

where X =
[
xt

1
xt

2
· · · xt

K

]t ∈ C
NtK×1 with xk ∈

C
Nt×1 being the k-th time transmitted information data,

Y =
[
yt

1
yt

2
· · · yt

K

]t ∈ C
NrK×1 with yk ∈

C
Nr×1 being the k-th time received signal, V =[
vt

1
vt

2
· · · vt

K

]t ∈ C
NrK×1 is the channel noise

vector, assumed i.i.d. complex Gaussian ∼ CN (0, σ2I),
H = block-diag

{
H1 H2 · · · HK

} ∈ C
NrK×NtK with

Hk ∈ C
Nr×Nt being the k-th tone channel matrix, G ∈

C
NtK×NtK is the linear precoder with average power con-

straint trace
(
GG

h
)

≤ NtK, and K is the data symbol
block length per antenna. The superscript t denotes transpose
operation.

We partition H into Ng groups via a properly chosen
interleaver, each group has a block-diagonal matrix Hk ∈
C

KG×KG , k = 1, 2, · · · , Ng . Then we find a local optimal
linear precoder Gk for the channel matrix Hk with a given
discrete constellation. The mutual information is then given
by the summation

I(X;Y|H,G)=
Ng∑
k=1

I(Xk;Yk|Hk,Gk) . (9)

Instead of solving a huge matrix G, we are now solving Ng

smaller matrices Gk, therefore, the computational complexity
can be reduced to a reasonable level, and the cost is that we
get a sub-optimal solution. Our preliminary results show that
if we carefully design the interleaver to place the sub-channel
matrices Hk into the Ng groups, and if the size of each matrix
Gk is properly chosen, the sub-optimal solution can be a near
optimal solution.

The choice of the matrix size KG is important for tradeoff
between mutual information and computational complexity.
The larger the KG, the larger the mutual information we can

possibly obtain through the sub-precoders Gk, however, the
higher computational complexity we will have to cope with.

The interleaver is another important design issue for maxi-
mizing the mutual information with low-complexity constraint.
Our extensive research indicates that if the interleaved and
grouped sub-channel matrices Hk have similar statistics, then
the mutual information have higher chance to be maximized.

Finally, we would like to state that the Ng sub-precoders
Gk are the solutions to the following equations:

log2 e

Kσ2
· E{Hh

k Hk Gk Σe,k} + λk · Gk = 0

k = 1, 2, · · · , Ng (10)

where Σe,k is the MMSE matrix corresponding the Hk. It is
defined similarly to Σe in (7).

It is noted that solving Gk of (10) is similar to solving G
of (6). Details are omitted for brevity.

V. NUMERICAL EXAMPLES

In this section, we consider two examples. The first example
shows that the optimal linear precoder provides large perfor-
mance gain on the mutual information for MIMO systems
over frequency flat fading with discrete-constellation inputs.
The second example shows that the proposed technique is
readily applicable to MIMO-OFDM systems which convert
the time-domain frequency-selective fading into frequency-
domain nonselective fading.

Example 1: Consider a 4×4 MIMO system over frequency-
flat Rayleigh fading channels. The receive antennas are as-
sumed uncorrelated. It is further assumed that the transmitter
has a broadside truncated Gaussian power azimuth spec-
trum with a 2o root-mean-square spread. Hence, the transmit
correlations Ψ

TX
are approximately given by (Ψ

TX
)i,j ≈

exp(−0.05(i − j)2) as discussed in [21], [35].
For this 4×4 system, we performed the following precoding

schemes: 1) optimal precoding with Gaussian inputs using
the algorithm presented in [22], [23] to obtain G = UD1/2;
2) statistical waterfilling [8] for Gaussian inputs; 3) our
proposed optimal precoding for BPSK inputs; 4) maximum
diversity precoding [4]; 5) taking the statistical waterfilling
[8] for BPSK inputs; 6) taking the Gaussian optimal precoder
G = UD1/2 for BPSK inputs; 7) statistically parallelizing the
channel with G = U for BPSK inputs. The mutual informa-
tion, along with channel capacity, are depicted in Fig. 1. For
comparison purpose, we also plotted the mutual information
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for the MIMO fading channel with no precoding for Gaussian
and BPSK inputs.
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Fig. 1. Mutual information of the 4×4 MIMO channel with Gaussian and
BPSK inputs.

Furthermore, we also performed the linear precoding
schemes for QPSK inputs for this 4 × 4 system. The mutual
information and channel capacity are depicted in Fig. 2.
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Fig. 2. Mutual information of the 4× 4 MIMO channel with Gaussian and
QPSK inputs.

From Figs. 1 and 2, we have the following observations:
1) Compared to the original system with no precod-

ing, employing the Gaussian-input-based optimal pre-
coder and/or statistical waterfilling scheme for discrete-
constellation inputs will lead to significant loss in the
mutual information for outer channel-coding rate higher
than 0.28. The higher the outer coding rate, the larger
the loss. For example, the loss is 25 dB when the outer
coding rate is 0.9, this is a huge loss.

2) Compared to the original system with no precoding, our
proposed linear precoding provides 6∼9 (or 5∼7) dB
gain for the outer channel-coding rate ranging from 0.01
to 0.95, for BPSK (or QPSK) inputs.

3) Our proposed linear precoder achieves higher mutual
information for BPSK and QPSK inputs than Gaussian
inputs with no precoding for outer channel-coding rate
ranging from 0.01 to 0.8. This is significant.

4) Maximum diversity precoding provides 2∼ 4 (or 0.5∼
3) dB gain compared to the original system with no
precoding, for BPSK (or QPSK) inputs when the outer
coding rate is between 0.5 and 0.95.

5) The optimal linear precoder structure, G = UD1/2

for Gaussian inputs is no longer optimal for discrete-
constellation inputs. This structure may result in large
loss in the mutual information.

6) For Gaussian inputs, the statistical waterfilling [8] has
almost optimal capacity performance [21]-[23] when the
signal-to-noise ratio (SNR) is lower than 5 dB, however,
it becomes sub-optimal when SNR is larger than 5 dB.

Example 2: we now consider a 2 × 2 MIMO system over
typical urban frequency selective Rayleigh fading channel
[36], it has L = 5 taps, which have inter-tap correlations
given by [36]. The transmit antenna correlations are given by
[1 0.8; 0.8 1]. We assume slowly time-varying with improved
Jakes’ (or Clarke’s) model [37] to generate Rayleigh fading.
We set K = 64 to form the MIMO-OFDM channel matrix
H. We choose KG = 8 to group the block-diagonal channel
matrix via an interleaver. Therefore, we have Ng = NtK

KG
= 16

groups sub-channel matrices Hk.
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Fig. 3. Mutual information of the MIMO-OFDM system over frequency
selective Rayleigh fading channel with inter-tap correlation, BPSK inputs.

Fig. 3 depicts the mutual information of the MIMO-OFDM
system with various linear precoding schemes. From this
figure, we can conclude the following: 1) although our pro-
posed block-diagonal-matrix linear precoder is a sub-optimal
solution for MIMO-OFDM systems with discrete-constellation
inputs, the performance gain is 3 ∼ 6 dB compared to the
MIMO-OFDM system with no precoding, when the outer
channel-coding rate is ranging from 0.01 to 0.95; 2) our
proposed linear precoder outperforms the maximum diversity
precoder by 3 ∼ 4 dB for outer coding rates from 0.01 to
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0.98; 3) our proposed linear precoder outperforms the MIMO-
OFDM system with Gaussian inputs when the outer coding
rate is less than 0.5; 4) the statistical waterfilling scheme leads
to performance loss compared to the MIMO-OFDM system
with no precoding, for BPSK inputs.

VI. CONCLUSION

In this paper, we have proposed a new linear precoding
scheme which directly maximizes the mutual information of
MIMO systems with discrete-constellation inputs. Under the
assumption that the receiver has perfect channel state infor-
mation and the transmitter knows only the channel covariance
information, we have shown that the optimal linear precoder is
generally a non-unitary matrix. We have demonstrated that the
Gaussian-input-based optimal linear precoder structure is no
longer optimal for discrete-constellation inputs. Our numerical
examples have shown that for MIMO systems over frequency
flat fading channels, our proposed optimal linear precoder
achieves 6-9 dB gain compared to the same system without
linear precoder. For MIMO-OFDM systems, our reduced-
complexity sub-optimal linear precoder captures 3-6 dB gain
compared to the same system with no precoding. Furthermore,
for those MIMO systems applying a linear precoder, which
was designed with gap approximation technique, to discrete-
constellation input case, huge loss in the mutual information
may occur when the signal-to-noise ratio is larger than 0 dB.
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