4,629 research outputs found

    SOPHIA

    Get PDF
    The Iraqi Insurgency (2003–2011) has commonly been characterized as demonstrating the tendency for violence to cluster and diffuse at the local level. Recent research has demonstrated that insurgent attacks in Iraq cluster in time and space in a manner similar to that observed for the spread of a disease. The current study employs a variety of approaches common to the scientific study of criminal activities to advance our understanding of the correlates of observed patterns of the incidence and contagion of insurgent attacks. We hypothesize that the precise patterns will vary from one place to another, but that more attacks will occur in areas that are heavily populated, where coalition forces are active, and along road networks. To test these hypotheses, we use a fishnet to build a geographical model of Baghdad that disaggregates the city into more than 3000 grid cell locations. A number of logistic regression models with spatial and temporal lags are employed to explore patterns of local escalation and diffusion. These models demonstrate the validity of arguments under each of three models but suggest, overall, that risk heterogeneity arguments provide the most compelling and consistent account of the location of insurgency. In particular, the results demonstrate that violence is most likely at locations with greater population levels, higher density of roads, and military garrisons

    Governments, Civilians, and the Evolution of Insurgency: Modeling the Early Dynamics of Insurgencies

    Get PDF
    This paper models the early dynamics of insurgency using an agent-based computer simulation of civilians, insurgents, and soldiers. In the simulation, insurgents choose to attack government forces, which then strike back. Such government counterattacks may result in the capture or killing of insurgents, may make nearby civilians afraid to become insurgents, but may also increase the anger of surrounding civilians if there is significant collateral damage. If civilians become angry enough, they become new insurgents. I simulate the dynamics of these interactions, focusing on the effectiveness of government forces at capturing insurgents vs. their accuracy in avoiding collateral damage. The simulations suggest that accuracy (avoidance of collateral damage) is more important for the long-term defeat of insurgency than is effectiveness at capturing insurgents in any given counterattack. There also may be a critical 'tipping point' for accuracy below which the length of insurgencies increases dramatically. The dynamics of how insurgencies grow or decline in response to various combinations of government accuracy and effectiveness illustrate the tradeoffs faced by governments in dealing with the early stages of an insurgency.Agent Based Models, Insurgency, Dynamics, Civil War

    Introducing the Spatial Conflict Dynamics indicator of political violence

    Full text link
    Modern armed conflicts have a tendency to cluster together and spread geographically. However, the geography of most conflicts remains under-studied. To fill this gap, this article presents a new indicator that measures two key geographical properties of subnational political violence: the conflict intensity within a region on the one hand, and the spatial distribution of conflict within a region on the other. We demonstrate the indicator in North and West Africa between 1997 to 2019 to show that it can clarify how conflicts can spread from place to place and how the geography of conflict changes over time

    Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions

    Full text link
    Hawkes (1971) introduced a powerful multivariate point process model of mutually exciting processes to explain causal structure in data. In this paper it is shown that the Granger causality structure of such processes is fully encoded in the corresponding link functions of the model. A new nonparametric estimator of the link functions based on a time-discretized version of the point process is introduced by using an infinite order autoregression. Consistency of the new estimator is derived. The estimator is applied to simulated data and to neural spike train data from the spinal dorsal horn of a rat.Comment: 20 pages, 4 figure

    Modeling and Estimation for Self-Exciting Spatio-Temporal Models of Terrorist Activity

    Get PDF
    Spatio-temporal hierarchical modeling is an extremely attractive way to model the spread of crime or terrorism data over a given region, especially when the observations are counts and must be modeled discretely. The spatio-temporal diffusion is placed, as a matter of convenience, in the process model allowing for straightforward estimation of the diffusion parameters through Bayesian techniques. However, this method of modeling does not allow for the existence of self-excitation, or a temporal data model dependency, that has been shown to exist in criminal and terrorism data. In this manuscript we will use existing theories on how violence spreads to create models that allow for both spatio-temporal diffusion in the process model as well as temporal diffusion, or self-excitation, in the data model. We will further demonstrate how Laplace approximations similar to their use in Integrated Nested Laplace Approximation can be used to quickly and accurately conduct inference of self-exciting spatio-temporal models allowing practitioners a new way of fitting and comparing multiple process models. We will illustrate this approach by fitting a self-exciting spatio-temporal model to terrorism data in Iraq and demonstrate how choice of process model leads to differing conclusions on the existence of self-excitation in the data and differing conclusions on how violence is spreading spatio-temporally

    Blast mines: physics, injury mechanisms and vehicle protection.

    Get PDF
    Since World War II, more vehicles have been lost to land mines than all other threats combined. Anti-vehicular (AV) mines are capable of disabling a heavy vehicle, or completely destroying a lighter vehicle. The most common form of AV mine is the blast mine, which uses a large amount of explosive to directly damage the target. In a conventional military setting, landmines are used as a defensive force-multiplier and to restrict the movements of the opposing force. They are relatively cheap to purchase and easy to acquire, hence landmines are also potent weapons in the insurgents armamentarium. The stand-offnature of its design has allowed insurgents to cause significant injuries to security forces in current conflicts with little personal risk. As a result, AV mines and improvised explosive devices (IEDs) have become the most common cause of death and injury to Coalition and local security forces operating in Iraq and Afghanistan. Detonation of an AV mine causes an explosive, exothermic reaction which results in the formation of a shockwave followed by a rapid expansion of gases. The shockwave is mainly reflected by the soillair interface and fractures the soil cap overthe mine. The detonation products then vent through the voids in the soil, resulting in a hollow inverse cone which consists of the detonation gases surrounded by the soil ejecta. It is the combination of the detonation products and soil ejecta that interact with the target vehicle and cause injury to the vehicle occupants. A number of different strategies are required to mitigate the blast effects of an explosion. Primary blast effects can be reduced by increasing the standoff distance between the seat of the explosion and the crew compartment. Enhancement of armour on the base of the vehicle, as well as improvements in personal protection can prevent penetration of fragments. Mitigating tertiary effects can be achieved by altering the vehicle geometry and structure, increasing vehicle mass, as well as developing new strategies to reduce the transfer of the impulse through the vehicle to the occupants. Protection from thermal injury can be provided by incorporating fire resistant materials into the vehicle and in personal clothing. The challenge for the vehicle designer is the incorporation of these protective measures within an operationally effective platform.Published versio
    • …
    corecore