75 research outputs found

    Approachability of Convex Sets in Games with Partial Monitoring

    Full text link
    We provide a necessary and sufficient condition under which a convex set is approachable in a game with partial monitoring, i.e.\ where players do not observe their opponents' moves but receive random signals. This condition is an extension of Blackwell's Criterion in the full monitoring framework, where players observe at least their payoffs. When our condition is fulfilled, we construct explicitly an approachability strategy, derived from a strategy satisfying some internal consistency property in an auxiliary game. We also provide an example of a convex set, that is neither (weakly)-approachable nor (weakly)-excludable, a situation that cannot occur in the full monitoring case. We finally apply our result to describe an ϵ\epsilon-optimal strategy of the uninformed player in a zero-sum repeated game with incomplete information on one side

    On an unified framework for approachability in games with or without signals

    Get PDF
    We unify standard frameworks for approachability both in full or partial monitoring by defining a new abstract game, called the "purely informative game", where the outcome at each stage is the maximal information players can obtain, represented as some probability measure. Objectives of players can be rewritten as the convergence (to some given set) of sequences of averages of these probability measures. We obtain new results extending the approachability theory developed by Blackwell moreover this new abstract framework enables us to characterize approachable sets with, as usual, a remarkably simple and clear reformulation for convex sets. Translated into the original games, those results become the first necessary and sufficient condition under which an arbitrary set is approachable and they cover and extend previous known results for convex sets. We also investigate a specific class of games where, thanks to some unusual definition of averages and convexity, we again obtain a complete characterization of approachable sets along with rates of convergence

    Robust approachability and regret minimization in games with partial monitoring

    Get PDF
    Approachability has become a standard tool in analyzing earning algorithms in the adversarial online learning setup. We develop a variant of approachability for games where there is ambiguity in the obtained reward that belongs to a set, rather than being a single vector. Using this variant we tackle the problem of approachability in games with partial monitoring and develop simple and efficient algorithms (i.e., with constant per-step complexity) for this setup. We finally consider external regret and internal regret in repeated games with partial monitoring and derive regret-minimizing strategies based on approachability theory

    Calibration and Internal no-Regret with Partial Monitoring

    Full text link
    Calibrated strategies can be obtained by performing strategies that have no internal regret in some auxiliary game. Such strategies can be constructed explicitly with the use of Blackwell's approachability theorem, in an other auxiliary game. We establish the converse: a strategy that approaches a convex BB-set can be derived from the construction of a calibrated strategy. We develop these tools in the framework of a game with partial monitoring, where players do not observe the actions of their opponents but receive random signals, to define a notion of internal regret and construct strategies that have no such regret

    Approachability in unknown games: Online learning meets multi-objective optimization

    Full text link
    In the standard setting of approachability there are two players and a target set. The players play repeatedly a known vector-valued game where the first player wants to have the average vector-valued payoff converge to the target set which the other player tries to exclude it from this set. We revisit this setting in the spirit of online learning and do not assume that the first player knows the game structure: she receives an arbitrary vector-valued reward vector at every round. She wishes to approach the smallest ("best") possible set given the observed average payoffs in hindsight. This extension of the standard setting has implications even when the original target set is not approachable and when it is not obvious which expansion of it should be approached instead. We show that it is impossible, in general, to approach the best target set in hindsight and propose achievable though ambitious alternative goals. We further propose a concrete strategy to approach these goals. Our method does not require projection onto a target set and amounts to switching between scalar regret minimization algorithms that are performed in episodes. Applications to global cost minimization and to approachability under sample path constraints are considered

    Minimizing Regret: The General Case

    Get PDF
    In repeated games with differential information on one side, the labelling "general case" refers to games in which the action of the informed player is not known to the uninformed, who can only observe a signal which is the random outcome of his and his opponent's action. Here we consider the problem of minimizing regret (in the sense first formulated by Hannan [8]) when the information available is of this type. We give a simple condition describing the approachable set.Minimize regret;differential information;approachability
    • …
    corecore