5 research outputs found

    ADAPTIVE NONLINEAR MODEL REDUCTION FOR FAST POWER SYSTEM SIMULATION

    Get PDF
    The dissertation proposes a new adaptive approach to power system model reduction for fast and accurate time-domain simulation. This new approach is a compromise between linear model reduction for faster simulation and nonlinear model reduction for better accuracy. During the simulation period, the approach adaptively switches among detailed and linearly or nonlinearly reduced models based on variations of the system state: it employs unreduced models for the fault-on period, uses weighted column norms of the admittance matrix to decide which functions are to be linearized in power system differential-algebraic equations for large changes of the state, and adopts a linearly reduced model for small changes of the state.Two versions of the adaptive model reduction approach are introduced. The first version uses traditional power system partitioning where the model reduction is applied to a defined large external area in a power system and the other area that is defined as the study area keeps full detailed models. The second version applies the adaptive model reduction to the whole system.Speed improvement techniques using parallelization are investigated. The first technique uses parallelism in space; it further divides the study area into subareas that can be simulated in parallel. The second technique uses parallelism in time; it integrates the adaptive model reduction into the coarse solver of the Parareal method.In addition, the dissertation proposes integration of tensor decomposition into the adaptive model reduction approach to further improve the speed and accuracy of simulation.All proposed approaches are validated by comprehensive case studies on the 140-bus 48-machine Northeast Power Coordinating Council system, 2383-bus 327-machine Polish system, and 5617-machine 70285-bus Eastern Interconnection system using different dynamic models

    Towards Faster-than-real-time Power System Simulation Using a Semi-analytical Approach and High-performance Computing

    Get PDF
    This dissertation investigates two possible directions of achieving faster-than-real-time simulation of power systems. The first direction is to develop a semi-analytical solution which represents the nonlinear dynamic characteristics of power systems in a limited time period. The second direction is to develop a parallel simulation scheme which allows the local numerical solutions of power systems to be developed independently in consecutive time intervals and then iteratively corrected toward the accurate global solution through the entire simulation time period. For the first direction, the semi-analytical solution is acquired using Adomian decomposition method (ADM). The ADM assumes the analytical solution of any nonlinear system can be decomposed into the summation of infinite analytical expressions. Those expressions are derived recursively using the system differential equations. By only keeping a finite number of those analytical expressions, an approximation of the analytical solution is yielded, which is defined as a semi-analytical solution. The semi-analytical solutions can be developed offline and evaluated online to facilitate the speedup of simulations. A parallel implementation and variable time window approach for the online evaluation stage are proposed in addition to the time performance analysis. For the second direction, the Parareal-in-time algorithm is tested for power system simulation. Parareal is essentially a multiple shooting method. It decomposes the simulation time into coarse time intervals and then fine time intervals within each coarse interval. The numerical integration uses a computational cheap solver on the coarse time grid and an expensive solver on the fine time grids. The solution within each coarse interval is propagated independently using the fine solver. The mismatch of the solution between the coarse solution and fine solution is corrected iteratively. The theoretical speedup can be achieved is the ratio of the coarse interval number and iteration number. In this dissertation, the Parareal algorithm is tested on the North American eastern interconnection system with around 70,000 buses and 5,000 generators

    Electromechanical Dynamics of High Photovoltaic Power Grids

    Get PDF
    This dissertation study focuses on the impact of high PV penetration on power grid electromechanical dynamics. Several major aspects of power grid electromechanical dynamics are studied under high PV penetration, including frequency response and control, inter-area oscillations, transient rotor angle stability and electromechanical wave propagation.To obtain dynamic models that can reasonably represent future power systems, Chapter One studies the co-optimization of generation and transmission with large-scale wind and solar. The stochastic nature of renewables is considered in the formulation of mixed-integer programming model. Chapter Two presents the development procedures of high PV model and investigates the impact of high PV penetration on frequency responses. Chapter Three studies the impact of PV penetration on inter-area oscillations of the U.S. Eastern Interconnection system. Chapter Four presents the impacts of high PV on other electromechanical dynamic issues, including transient rotor angle stability and electromechanical wave propagation. Chapter Five investigates the frequency response enhancement by conventional resources. Chapter Six explores system frequency response improvement through real power control of wind and PV. For improving situation awareness and frequency control, Chapter Seven studies disturbance location determination based on electromechanical wave propagation. In addition, a new method is developed to generate the electromechanical wave propagation speed map, which is useful to detect system inertia distribution change. Chapter Eight provides a review on power grid data architectures for monitoring and controlling power grids. Challenges and essential elements of data architecture are analyzed to identify various requirements for operating high-renewable power grids and a conceptual data architecture is proposed. Conclusions of this dissertation study are given in Chapter Nine
    corecore