6 research outputs found

    Predicting Cyber Events by Leveraging Hacker Sentiment

    Full text link
    Recent high-profile cyber attacks exemplify why organizations need better cyber defenses. Cyber threats are hard to accurately predict because attackers usually try to mask their traces. However, they often discuss exploits and techniques on hacking forums. The community behavior of the hackers may provide insights into groups' collective malicious activity. We propose a novel approach to predict cyber events using sentiment analysis. We test our approach using cyber attack data from 2 major business organizations. We consider 3 types of events: malicious software installation, malicious destination visits, and malicious emails that surpassed the target organizations' defenses. We construct predictive signals by applying sentiment analysis on hacker forum posts to better understand hacker behavior. We analyze over 400K posts generated between January 2016 and January 2018 on over 100 hacking forums both on surface and Dark Web. We find that some forums have significantly more predictive power than others. Sentiment-based models that leverage specific forums can outperform state-of-the-art deep learning and time-series models on forecasting cyber attacks weeks ahead of the events

    Discriminative Feature Extraction of Time-Series Data to Improve Temporal Pattern Detection using Classification Algorithms

    Get PDF
    Time-series data streams often contain predictive value in the form of unique patterns. While these patterns may be used as leading indicators for event prediction, a lack of prior knowledge of pattern shape and irregularities can render traditional forecasting methods ineffective. The research in this thesis tested a means of predetermining the most effective combination of transformations to be applied to time-series data when training a classifier to predict whether an event will occur at a given time. The transformations tested on provided data streams included subsetting of the data, aggregation over various numbers of data points, testing of different predictive lead times, and converting the data set into a binary set of values. The benefit of the transformations is to reduce the data used for training down to only the most useful pattern containing points and clarify the predictive pattern contained in the set. In addition, the transformations tested significantly reduce the number of features used for classifier training through subsetting and aggregation. The performance benefit of the transformations was tested through creating a series of daily positive/negative event predictions over the span of a test set derived from each provided data stream. A landmarking system was then developed that utilizes the prior results obtained by the system to predetermine a “best fit” transformation to use on a new, untested data stream. Results indicate that the proposed set of transformations consistently result in improved classifier performance over the use of untransformed data values. Landmarking system testing shows that the use of prior knowledge results in selection of a near best fit transformation when using as few as 3 reference transformations

    INTRUSION PREDICTION SYSTEM FOR CLOUD COMPUTING AND NETWORK BASED SYSTEMS

    Get PDF
    Cloud computing offers cost effective computational and storage services with on-demand scalable capacities according to the customers’ needs. These properties encourage organisations and individuals to migrate from classical computing to cloud computing from different disciplines. Although cloud computing is a trendy technology that opens the horizons for many businesses, it is a new paradigm that exploits already existing computing technologies in new framework rather than being a novel technology. This means that cloud computing inherited classical computing problems that are still challenging. Cloud computing security is considered one of the major problems, which require strong security systems to protect the system, and the valuable data stored and processed in it. Intrusion detection systems are one of the important security components and defence layer that detect cyber-attacks and malicious activities in cloud and non-cloud environments. However, there are some limitations such as attacks were detected at the time that the damage of the attack was already done. In recent years, cyber-attacks have increased rapidly in volume and diversity. In 2013, for example, over 552 million customers’ identities and crucial information were revealed through data breaches worldwide [3]. These growing threats are further demonstrated in the 50,000 daily attacks on the London Stock Exchange [4]. It has been predicted that the economic impact of cyber-attacks will cost the global economy $3 trillion on aggregate by 2020 [5]. This thesis focused on proposing an Intrusion Prediction System that is capable of sensing an attack before it happens in cloud or non-cloud environments. The proposed solution is based on assessing the host system vulnerabilities and monitoring the network traffic for attacks preparations. It has three main modules. The monitoring module observes the network for any intrusion preparations. This thesis proposes a new dynamic-selective statistical algorithm for detecting scan activities, which is part of reconnaissance that represents an essential step in network attack preparation. The proposed method performs a statistical selective analysis for network traffic searching for an attack or intrusion indications. This is achieved by exploring and applying different statistical and probabilistic methods that deal with scan detection. The second module of the prediction system is vulnerabilities assessment that evaluates the weaknesses and faults of the system and measures the probability of the system to fall victim to cyber-attack. Finally, the third module is the prediction module that combines the output of the two modules and performs risk assessments of the system security from intrusions prediction. The results of the conducted experiments showed that the suggested system outperforms the analogous methods in regards to performance of network scan detection, which means accordingly a significant improvement to the security of the targeted system. The scanning detection algorithm has achieved high detection accuracy with 0% false negative and 50% false positive. In term of performance, the detection algorithm consumed only 23% of the data needed for analysis compared to the best performed rival detection method

    Applying multi-correlation for improving forecasting in cyber security

    No full text
    corecore