5,901 research outputs found

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Using Process Mining and Model-driven Engineering to Enhance Security of Web Information Systems

    Get PDF
    Due to the development of Smart Cities and Internet of Things, there has been an increasing interest in the use of Web information systems in different areas and domains. Besides, the number of attacks received by this kind of systems is increasing continuously. Therefore, there is a need to strengthen their protection and security. In this paper, we propose a method based on Process Mining and Model- Driven Engineering to improve the security of Web information systems. Besides, this method has been applied to the SID Digital Library case study and some preliminary results to improve the security of this system are described

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Visual analysis of sensor logs in smart spaces: Activities vs. situations

    Get PDF
    Models of human habits in smart spaces can be expressed by using a multitude of representations whose readability influences the possibility of being validated by human experts. Our research is focused on developing a visual analysis pipeline (service) that allows, starting from the sensor log of a smart space, to graphically visualize human habits. The basic assumption is to apply techniques borrowed from the area of business process automation and mining on a version of the sensor log preprocessed in order to translate raw sensor measurements into human actions. The proposed pipeline is employed to automatically extract models to be reused for ambient intelligence. In this paper, we present an user evaluation aimed at demonstrating the effectiveness of the approach, by comparing it wrt. a relevant state-of-the-art visual tool, namely SITUVIS

    Heuristics Miners for Streaming Event Data

    Full text link
    More and more business activities are performed using information systems. These systems produce such huge amounts of event data that existing systems are unable to store and process them. Moreover, few processes are in steady-state and due to changing circumstances processes evolve and systems need to adapt continuously. Since conventional process discovery algorithms have been defined for batch processing, it is difficult to apply them in such evolving environments. Existing algorithms cannot cope with streaming event data and tend to generate unreliable and obsolete results. In this paper, we discuss the peculiarities of dealing with streaming event data in the context of process mining. Subsequently, we present a general framework for defining process mining algorithms in settings where it is impossible to store all events over an extended period or where processes evolve while being analyzed. We show how the Heuristics Miner, one of the most effective process discovery algorithms for practical applications, can be modified using this framework. Different stream-aware versions of the Heuristics Miner are defined and implemented in ProM. Moreover, experimental results on artificial and real logs are reported

    A Framework for File Format Fuzzing with Genetic Algorithms

    Get PDF
    Secure software, meaning software free from vulnerabilities, is desirable in today\u27s marketplace. Consumers are beginning to value a product\u27s security posture as well as its functionality. Software development companies are recognizing this trend, and they are factoring security into their entire software development lifecycle. Secure development practices like threat modeling, static analysis, safe programming libraries, run-time protections, and software verification are being mandated during product development. Mandating these practices improves a product\u27s security posture before customer delivery, and these practices increase the difficulty of discovering and exploiting vulnerabilities. Since the 1980\u27s, security researchers have uncovered software defects by fuzz testing an application. In fuzz testing\u27s infancy, randomly generated data could discover multiple defects quickly. However, as software matures and software development companies integrate secure development practices into their development life cycles, fuzzers must apply more sophisticated techniques in order to retain their ability to uncover defects. Fuzz testing must evolve, and fuzz testing practitioners must devise new algorithms to exercise an application in unexpected ways. This dissertation\u27s objective is to create a proof-of-concept genetic algorithm fuzz testing framework to exercise an application\u27s file format parsing routines. The framework includes multiple genetic algorithm variations, provides a configuration scheme, and correlates data gathered from static and dynamic analysis to guide negative test case evolution. Experiments conducted for this dissertation illustrate the effectiveness of a genetic algorithm fuzzer in comparison to standard fuzz testing tools. The experiments showcase a genetic algorithm fuzzer\u27s ability to discover multiple unique defects within a limited number of negative test cases. These experiments also highlight an application\u27s increased execution time when fuzzing with a genetic algorithm. To combat increased execution time, a distributed architecture is implemented and additional experiments demonstrate a decrease in execution time comparable to standard fuzz testing tools. A final set of experiments provide guidance on fitness function selection with a CHC genetic algorithm fuzzer with different population size configurations

    Advanced Threat Intelligence: Interpretation of Anomalous Behavior in Ubiquitous Kernel Processes

    Get PDF
    Targeted attacks on digital infrastructures are a rising threat against the confidentiality, integrity, and availability of both IT systems and sensitive data. With the emergence of advanced persistent threats (APTs), identifying and understanding such attacks has become an increasingly difficult task. Current signature-based systems are heavily reliant on fixed patterns that struggle with unknown or evasive applications, while behavior-based solutions usually leave most of the interpretative work to a human analyst. This thesis presents a multi-stage system able to detect and classify anomalous behavior within a user session by observing and analyzing ubiquitous kernel processes. Application candidates suitable for monitoring are initially selected through an adapted sentiment mining process using a score based on the log likelihood ratio (LLR). For transparent anomaly detection within a corpus of associated events, the author utilizes star structures, a bipartite representation designed to approximate the edit distance between graphs. Templates describing nominal behavior are generated automatically and are used for the computation of both an anomaly score and a report containing all deviating events. The extracted anomalies are classified using the Random Forest (RF) and Support Vector Machine (SVM) algorithms. Ultimately, the newly labeled patterns are mapped to a dedicated APT attacker–defender model that considers objectives, actions, actors, as well as assets, thereby bridging the gap between attack indicators and detailed threat semantics. This enables both risk assessment and decision support for mitigating targeted attacks. Results show that the prototype system is capable of identifying 99.8% of all star structure anomalies as benign or malicious. In multi-class scenarios that seek to associate each anomaly with a distinct attack pattern belonging to a particular APT stage we achieve a solid accuracy of 95.7%. Furthermore, we demonstrate that 88.3% of observed attacks could be identified by analyzing and classifying a single ubiquitous Windows process for a mere 10 seconds, thereby eliminating the necessity to monitor each and every (unknown) application running on a system. With its semantic take on threat detection and classification, the proposed system offers a formal as well as technical solution to an information security challenge of great significance.The financial support by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs, and the National Foundation for Research, Technology and Development is gratefully acknowledged

    Process Mining Workshops

    Get PDF
    This open access book constitutes revised selected papers from the International Workshops held at the Third International Conference on Process Mining, ICPM 2021, which took place in Eindhoven, The Netherlands, during October 31–November 4, 2021. The conference focuses on the area of process mining research and practice, including theory, algorithmic challenges, and applications. The co-located workshops provided a forum for novel research ideas. The 28 papers included in this volume were carefully reviewed and selected from 65 submissions. They stem from the following workshops: 2nd International Workshop on Event Data and Behavioral Analytics (EDBA) 2nd International Workshop on Leveraging Machine Learning in Process Mining (ML4PM) 2nd International Workshop on Streaming Analytics for Process Mining (SA4PM) 6th International Workshop on Process Querying, Manipulation, and Intelligence (PQMI) 4th International Workshop on Process-Oriented Data Science for Healthcare (PODS4H) 2nd International Workshop on Trust, Privacy, and Security in Process Analytics (TPSA) One survey paper on the results of the XES 2.0 Workshop is included
    corecore