3 research outputs found

    Applying a Rigorous Quasi-Steady State Approximation Method for Proving the Absence of Oscillations in Models of Genetic Circuits

    Get PDF
    In this paper, we apply a rigorous quasi-steady state approximation method on a family of models describing a gene regulated by a polymer of its own protein. We study the absence of oscillations for this family of models and prove that Poincaré-Andronov-Hopf bifurcations arise if and only if the number of polymerizations is greater than 8. A result presented in a former paper at Algebraic Biology 2007 is thereby generalized. The rigorous method is illustrated over the basic enzymatic reaction

    A Survey of Some Methods for Real Quantifier Elimination, Decision, and Satisfiability and Their Applications

    Get PDF
    International audienceEffective quantifier elimination procedures for first-order theories provide a powerful tool for genericallysolving a wide range of problems based on logical specifications. In contrast to general first-order provers, quantifierelimination procedures are based on a fixed set of admissible logical symbolswith an implicitly fixed semantics. Thisadmits the use of sub-algorithms from symbolic computation. We are going to focus on quantifier elimination forthe reals and its applications giving examples from geometry, verification, and the life sciences. Beyond quantifierelimination we are going to discuss recent results with a subtropical procedure for an existential fragment of thereals. This incomplete decision procedure has been successfully applied to the analysis of reaction systems inchemistry and in the life sciences
    corecore