4 research outputs found

    Evolution of microgrids with converter-interfaced generations: Challenges and opportunities

    Full text link
    © 2019 Elsevier Ltd Although microgrids facilitate the increased penetration of distributed generations (DGs) and improve the security of power supplies, they have some issues that need to be better understood and addressed before realising the full potential of microgrids. This paper presents a comprehensive list of challenges and opportunities supported by a literature review on the evolution of converter-based microgrids. The discussion in this paper presented with a view to establishing microgrids as distinct from the existing distribution systems. This is accomplished by, firstly, describing the challenges and benefits of using DG units in a distribution network and then those of microgrid ones. Also, the definitions, classifications and characteristics of microgrids are summarised to provide a sound basis for novice researchers to undertake ongoing research on microgrids

    Pertanika Journal of Science & Technology

    Get PDF

    Network and System Management for the Security Monitoring of Microgrids using IEC 62351-7

    Get PDF
    Interest in adding renewable energy sources to the power grid has risen substantially in recent years. As a response to this growing interest, the deployment of microgrids capable of integrating renewable energy has become more widespread. Microgrids are independent power systems that deliver power from different kinds of Distributed Energy Resources (DERs) to local energy consumers more efficiently than the conventional power grid. The microgrid leverages advanced information and communication technologies for vital protection, monitoring, and control operations as well as for energy management. With the use of information technology comes the need to protect the microgrid information layer from cyberattacks that can impact critical microgrid power operations. In this research, a security monitoring system to detect cyberattacks against the microgrid, in near-real time, is designed and implemented. To achieve this, the system applies Network and System Management (NSM) for microgrid security monitoring, as specified by the IEC 62351-7 security standard for power systems. The specific contributions of this research are (i) an investigation on the suitability of NSM for microgrid security monitoring; (ii) the design and implementation of an NSM platform; (iii) the design and implementation of a security analytics framework for NSM based on deep learning models; (iv) the elaboration of a comprehensive microgrid simulation model deployed on a Hardware in the Loop (HIL) co-simulation framework; and (v) an experimental evaluation on the effectiveness and scalability of the NSM security monitoring platform for detection against microgrid attack scenarios, with a methodology being used to systematically generate the scenarios. The experimental results validate the usefulness of NSM in detecting attacks against the microgrid

    Applying a CMAC neural network to a photovoltaic system islanding detection

    No full text
    corecore