7,389 research outputs found

    Systematic Analysis of Majorization in Quantum Algorithms

    Get PDF
    Motivated by the need to uncover some underlying mathematical structure of optimal quantum computation, we carry out a systematic analysis of a wide variety of quantum algorithms from the majorization theory point of view. We conclude that step-by-step majorization is found in the known instances of fast and efficient algorithms, namely in the quantum Fourier transform, in Grover's algorithm, in the hidden affine function problem, in searching by quantum adiabatic evolution and in deterministic quantum walks in continuous time solving a classically hard problem. On the other hand, the optimal quantum algorithm for parity determination, which does not provide any computational speed-up, does not show step-by-step majorization. Lack of both speed-up and step-by-step majorization is also a feature of the adiabatic quantum algorithm solving the 2-SAT ``ring of agrees'' problem. Furthermore, the quantum algorithm for the hidden affine function problem does not make use of any entanglement while it does obey majorization. All the above results give support to a step-by-step Majorization Principle necessary for optimal quantum computation.Comment: 15 pages, 14 figures, final versio

    QuASeR -- Quantum Accelerated De Novo DNA Sequence Reconstruction

    Full text link
    In this article, we present QuASeR, a reference-free DNA sequence reconstruction implementation via de novo assembly on both gate-based and quantum annealing platforms. Each one of the four steps of the implementation (TSP, QUBO, Hamiltonians and QAOA) is explained with simple proof-of-concept examples to target both the genomics research community and quantum application developers in a self-contained manner. The details of the implementation are discussed for the various layers of the quantum full-stack accelerator design. We also highlight the limitations of current classical simulation and available quantum hardware systems. The implementation is open-source and can be found on https://github.com/prince-ph0en1x/QuASeR.Comment: 24 page

    Parallel eigensolvers in plane-wave Density Functional Theory

    Full text link
    We consider the problem of parallelizing electronic structure computations in plane-wave Density Functional Theory. Because of the limited scalability of Fourier transforms, parallelism has to be found at the eigensolver level. We show how a recently proposed algorithm based on Chebyshev polynomials can scale into the tens of thousands of processors, outperforming block conjugate gradient algorithms for large computations
    corecore