883 research outputs found

    In Vitro Techniques to Accelerate Flavonoid Synthesis in some Euphorbiaceae Members

    Get PDF
    Intrusion detection is the process of monitoring the events occurring in a computer system or network and analyzing them for signs of possible incidents, which are violations or imminent threats of violation of computer security policies, acceptable use policies, or standard security practices. An intrusion detection system (IDS) monitors network traffic and monitors for suspicious activity and alerts the system or network administrator. It identifies unauthorized use, misuse, and abuse of computer systems by both system insiders and external penetrators. Intrusion detection systems (IDS) are essential components in a secure network environment, allowing for early detection of malicious activities and attacks. By employing information provided by IDS, it is possible to apply appropriate countermeasures and mitigate attacks that would otherwise seriously undermine network security. However, current high volumes of network traffic overwhelm most IDS techniques requiring new approaches that are able to handle huge volume of log and packet analysis while still maintaining high throughput. Hadoop, an open-source computing platform of MapReduce and a distributed file system, has become a popular infrastructure for massive data analytics because it facilitates scalable data processing and storage services on a distributed computing system consisting of commodity hardware. The proposed architecture is able to efficiently handle large volumes of collected data and consequent high processing loads using Hadoop, MapReduce and cloud computing infrastructure. The main focus of the paper is to enhance the throughput and scalability of the IDS Log analysi

    Towards Large-Scale, Heterogeneous Anomaly Detection Systems in Industrial Networks: A Survey of Current Trends

    Get PDF
    Industrial Networks (INs) are widespread environments where heterogeneous devices collaborate to control and monitor physical processes. Some of the controlled processes belong to Critical Infrastructures (CIs), and, as such, IN protection is an active research field. Among different types of security solutions, IN Anomaly Detection Systems (ADSs) have received wide attention from the scientific community.While INs have grown in size and in complexity, requiring the development of novel, Big Data solutions for data processing, IN ADSs have not evolved at the same pace. In parallel, the development of BigData frameworks such asHadoop or Spark has led the way for applying Big Data Analytics to the field of cyber-security,mainly focusing on the Information Technology (IT) domain. However, due to the particularities of INs, it is not feasible to directly apply IT security mechanisms in INs, as IN ADSs face unique characteristics. In this work we introduce three main contributions. First, we survey the area of Big Data ADSs that could be applicable to INs and compare the surveyed works. Second, we develop a novel taxonomy to classify existing INbased ADSs. And, finally, we present a discussion of open problems in the field of Big Data ADSs for INs that can lead to further development

    Big data analytics: a predictive analysis applied to cybersecurity in a financial organization

    Get PDF
    Project Work presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in Knowledge Management and Business IntelligenceWith the generalization of the internet access, cyber attacks have registered an alarming growth in frequency and severity of damages, along with the awareness of organizations with heavy investments in cybersecurity, such as in the financial sector. This work is focused on an organization’s financial service that operates on the international markets in the payment systems industry. The objective was to develop a predictive framework solution responsible for threat detection to support the security team to open investigations on intrusive server requests, over the exponentially growing log events collected by the SIEM from the Apache Web Servers for the financial service. A Big Data framework, using Hadoop and Spark, was developed to perform classification tasks over the financial service requests, using Neural Networks, Logistic Regression, SVM, and Random Forests algorithms, while handling the training of the imbalance dataset through BEV. The main conclusions over the analysis conducted, registered the best scoring performances for the Random Forests classifier using all the preprocessed features available. Using the all the available worker nodes with a balanced configuration of the Spark executors, the most performant elapsed times for loading and preprocessing of the data were achieved using the column-oriented ORC with native format, while the row-oriented CSV format performed the best for the training of the classifiers.Com a generalização do acesso à internet, os ciberataques registaram um crescimento alarmante em frequência e severidade de danos causados, a par da consciencialização das organizações, com elevados investimentos em cibersegurança, como no setor financeiro. Este trabalho focou-se no serviço financeiro de uma organização que opera nos mercados internacionais da indústria de sistemas de pagamento. O objetivo consistiu no desenvolvimento uma solução preditiva responsável pela detecção de ameaças, por forma a dar suporte à equipa de segurança na abertura de investigações sobre pedidos intrusivos no servidor, relativamente aos exponencialmente crescentes eventos de log coletados pelo SIEM, referentes aos Apache Web Servers, para o serviço financeiro. Uma solução de Big Data, usando Hadoop e Spark, foi desenvolvida com o objectivo de executar tarefas de classificação sobre os pedidos do serviço financeiros, usando os algoritmos Neural Networks, Logistic Regression, SVM e Random Forests, solucionando os problemas associados ao treino de um dataset desequilibrado através de BEV. As principais conclusões sobre as análises realizadas registaram os melhores resultados de classificação usando o algoritmo Random Forests com todas as variáveis pré-processadas disponíveis. Usando todos os nós do cluster e uma configuração balanceada dos executores do Spark, os melhores tempos para carregar e pré-processar os dados foram obtidos usando o formato colunar ORC nativo, enquanto o formato CSV, orientado a linhas, apresentou os melhores tempos para o treino dos classificadores
    • …
    corecore