3 research outputs found

    Applying graph centrality metrics in visual analytics of scientific standard datasets

    Full text link
    © 2019 by the authors. Graphs are often used to model data with a relational structure and graphs are usually visualised into node-link diagrams for a better understanding of the underlying data. Node-link diagrams represent not only data entries in a graph, but also the relations among the data entries. Further, many graph drawing algorithms and graph centrality metrics have been successfully applied in visual analytics of various graph datasets, yet little attention has been paid to analytics of scientific standard data. This study attempts to adopt graph drawing methods (force-directed algorithms) to visualise scientific standard data and provide information with importance �ranking� based on graph centrality metrics such as Weighted Degree, PageRank, Eigenvector, Betweenness and Closeness factors. The outcomes show that our method can produce clear graph layouts of scientific standard for visual analytics, along with the importance �ranking� factors (represent via node colour, size etc.). Our method may assist users with tracking various relationships while understanding scientific standards with fewer relation issues (missing/wrong connection etc.) through focusing on higher priority standards

    A Visual Approach for the SARS (Severe Acute Respiratory Syndrome) Outbreak Data Analysis

    Full text link
    Virus outbreaks are threats to humanity, and coronaviruses are the latest of many epidemics in the last few decades in the world. SARS-CoV (Severe Acute Respiratory Syndrome Associated Coronavirus) is a member of the coronavirus family, so its study is useful for relevant virus data research. In this work, we conduct a proposed approach that is non-medical/clinical, generate graphs from five features of the SARS outbreak data in five countries and regions, and offer insights from a visual analysis perspective. The results show that prevention measures such as quarantine are the most common control policies used, and areas with strict measures did have fewer peak period days; for instance, Hong Kong handled the outbreak better than other areas. Data conflict issues found with this approach are discussed as well. Visual analysis is also proved to be a useful technique to present the SARS outbreak data at this stage; furthermore, we are proceeding to apply a similar methodology with more features to future COVID-19 research from a visual analysis perfective
    corecore