2 research outputs found

    ALJP: An Arabic Legal Judgment Prediction in Personal Status Cases Using Machine Learning Models

    Full text link
    Legal Judgment Prediction (LJP) aims to predict judgment outcomes based on case description. Several researchers have developed techniques to assist potential clients by predicting the outcome in the legal profession. However, none of the proposed techniques were implemented in Arabic, and only a few attempts were implemented in English, Chinese, and Hindi. In this paper, we develop a system that utilizes deep learning (DL) and natural language processing (NLP) techniques to predict the judgment outcome from Arabic case scripts, especially in cases of custody and annulment of marriage. This system will assist judges and attorneys in improving their work and time efficiency while reducing sentencing disparity. In addition, it will help litigants, lawyers, and law students analyze the probable outcomes of any given case before trial. We use a different machine and deep learning models such as Support Vector Machine (SVM), Logistic regression (LR), Long Short Term Memory (LSTM), and Bidirectional Long Short-Term Memory (BiLSTM) using representation techniques such as TF-IDF and word2vec on the developed dataset. Experimental results demonstrate that compared with the five baseline methods, the SVM model with word2vec and LR with TF-IDF achieve the highest accuracy of 88% and 78% in predicting the judgment on custody cases and annulment of marriage, respectively. Furthermore, the LR and SVM with word2vec and BiLSTM model with TF-IDF achieved the highest accuracy of 88% and 69% in predicting the probability of outcomes on custody cases and annulment of marriage, respectively

    ์—ด๋ฆฐ ์–‘์ž๊ณ„์—์„œ์˜ ๋น„ํ‰ํ˜• ์ƒ์ „์ด ํ˜„์ƒ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ๋ฌผ๋ฆฌยท์ฒœ๋ฌธํ•™๋ถ€(๋ฌผ๋ฆฌํ•™์ „๊ณต), 2021. 2. ๊ฐ•๋ณ‘๋‚จ.Recent advances in cold atomic physics offer a platform to explore non-equilibrium phase transition in open quantum many-body systems. Such nonequilibrium critical phenomena originate from the competition between quantum fluctuations (coherent Hamiltonian) and classical fluctuations (incoherent dissipation). In this regard, the fundamental question arises as to whether the system exhibits novel universal behavior in which the quantum fluctuations are relevant. If it does not exhibit novel universality, it may reduce to the classical universality, and is described as so-called "quantum-to-classical mapping". Many studies have been devoted to this question, but it has not been fully understood yet. In this dissertation, we aim to investigate this question by considering the many-body physics of the quantum contact process (QCP), which is a generalization of the classical contact process belonging to the directed percolation (DP) class. The DP class is the most robust and well-studied class in classical nonequilibrium systems. The QCP has additional quantum processes to the DP class, and the quantum fluctuations may affect the universality class. Moreover, the QCP is experimentally feasible in ultra-cold Rydberg atomic systems. Specifically, this dissertation presents recent studies related to critical phenomena of the QCP. Firstly, motivated by the Rydberg atomic experiment with the dipole-dipole interaction, we investigate QCP with the long-range interactions using the semi-classical approach. Generally, a system with long-range interaction can exhibit different universality from the corresponding system with short-range interaction. In this regard, we find that the novel classical universality is obtained for the regime where the long-range interaction is relevant, and it is called the ``long-range tricritical DP class''. For the regime where the long-range interaction is irrelevant, the mean-field phase diagram of our long-range model corresponds to that of the ordinary QCP. Next, we study the low-dimensional physics of the long-range tricritical directed percolation class using renormalization group theory and Monte Carlo simulation. Depending on the strength of the long-range interaction, we find that the universality class is changed from the mean-field long-range tricritical DP to ordinary tricritical DP. To investigate the one-dimensional and two-dimensional QCP, we use machine learning and quantum simulations such as quantum jump Monte Carlo simulation and tensor network method. We find that in one dimension, there exists the crossover region, along which the critical exponents continuously varies from a quantum DP to the DP class. This indicates that the quantum coherent process is relevant to the critical phenomena. We also propose an experimental setting to investigate the crossover region. In addition, we investigate the mean-field behavior of dissipative quantum systems using the permutational symmetry of fully-connected graph. Specifically, we consider the dissipative transverse Ising (DTI) model, driven-dissipative XY model, and QCP. We find that the DTI model exhibits a continuous phase transition for the entire parameter space, and the driven-dissipative XY model shows a discontinuous phase transition, contrary to the results from Keldysh formalism. Instead, those correspond to the fluctuationless MF approach. In addition, the phase transitions of QCP shows that the transition line and universality class correspond to the semi-classical approach, whereas there exists a crossover region analogous to the one-dimensional QCP. Finally, we present the phase diagram of the QCP including the mean-field and low-dimensional cases.์ตœ๊ทผ ์ฐจ๊ฐ€์šด ์›์ž ๊ฐ€์Šค ์‹คํ—˜์˜ ๋ฐœ์ „์€ ์—ด๋ฆฐ ์–‘์ž ๋‹ค์ฒด๊ณ„ ์‹œ์Šคํ…œ์—์„œ ๋น„ํ‰ํ˜• ์ƒ์ „์ด๋ฅผ ์—ฐ๊ตฌ ํ•  ์ˆ˜ ์žˆ๋Š” ํ™˜๊ฒฝ์„ ์ œ๊ณตํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„ํ‰ํ˜• ์ƒ์ „์ด๋Š” ์–‘์ž ์š”๋™(๊ฒฐ๋งž์€ ํ•ด๋ฐ€ํ† ๋‹ˆ์•ˆ)๊ณผ ๊ณ ์ „์ ์ธ ์š”๋™(๋น„๊ฒฐ๋งž์€ ์†Œ์‹ค) ์‚ฌ์ด์˜ ๊ฒฝ์Ÿ์—์„œ ๋น„๋กฏํ•œ๋‹ค. ์ด์™€ ๊ด€๋ จํ•˜์—ฌ ์‹œ์Šคํ…œ์ด ์–‘์ž ์š”๋™์ด ๊ด€๋ จ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ณดํŽธ์„ฑ ๊ตฐ์„ ๋ณผ ์ˆ˜ ์žˆ์„์ง€์— ๋Œ€ํ•œ ๊ทผ๋ณธ์ ์ธ ์งˆ๋ฌธ์ด ์žˆ์—ˆ๋‹ค. ๋งŒ์ผ ๋ณดํŽธ์„ฑ์ด ์ƒˆ๋กœ์šด ๋ณดํŽธ์„ฑ์„ ๋ณด์ด์ง€ ์•Š์€๋‹ค๋ฉด, ๊ณ ์ „์ ์ธ ๋ณดํŽธ์„ฑ์œผ๋กœ ๋  ๊ฒƒ์ด๊ณ  ์ด๊ฒƒ์€ ์–‘์ž-๊ณ ์ „ ๋งคํ•‘์— ์˜ํ•ด ์„ค๋ช… ๋  ์ˆ˜ ์žˆ๋‹ค. ์ด ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋งŽ์€ ์—ฐ๊ตฌ๋“ค์ด ์ง„ํ–‰๋˜์—ˆ์ง€๋งŒ, ์•„์ง ์™„์ „ํžˆ ์ดํ•ด๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ๋””๋ ‰ํ‹ฐ๋“œ ์Šค๋ฏธ๊ธฐ ๊ตฐ์— ์†ํ•˜๋Š” ๊ณ ์ „์ ์ธ ์ ‘์ด‰ ๊ณผ์ • ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™”์ธ ์–‘์ž ์ ‘์ด‰ ๊ณผ์ •์˜ ๋‹ค์ฒด๊ณ„ ๋ฌผ๋ฆฌํ•™์„ ๊ณ ๋ คํ•จ์œผ๋กœ์จ ์ด ์งˆ๋ฌธ์— ๋Œ€ํ•ด ํƒ๊ตฌํ•˜๋ ค๊ณ  ํ•œ๋‹ค. ๋””๋ ‰ํ‹ฐ๋“œ ์Šค๋ฏธ๊ธฐ ๊ตฐ์€ ๊ณ ์ „์ ์ธ ๋น„ํ‰ํ˜• ๊ณ„์—์„œ ๋งŽ์€ ๋ชจ๋ธ์ด ์†ํ•˜๊ณ  ์ž˜ ์—ฐ๊ตฌ ๋œ ๋ณดํŽธ์„ฑ ๊ตฐ์ด๋‹ค. ์–‘์ž ์ ‘์ด‰ ๊ณผ์ •์€ ๋””๋ ‰ํ‹ฐ๋“œ ์Šค๋ฏธ๊ธฐ ๊ตฐ์— ์ถ”๊ฐ€์ ์œผ๋กœ ์–‘์ž ๊ณผ์ •์ด ์žˆ์œผ๋ฏ€๋กœ ์ด๋Ÿฌํ•œ ์–‘์ž ํšจ๊ณผ๋กœ ์ธํ•ด ์ƒˆ๋กœ์šด ๋ณดํŽธ์„ฑ์œผ๋กœ ๋ฐ”๋€” ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์–‘์ž ์ ‘์ด‰ ๊ณผ์ •์€ ๊ทน์ €์˜จ ๋ฆฌ๋“œ๋ฒ„๊ทธ ์›์ž ๊ณ„์—์„œ ์‹คํ—˜์ ์œผ๋กœ ๊ตฌํ˜„ ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์ตœ๊ทผ ์–‘์ž ์ ‘์ด‰ ๊ณผ์ •์—์„œ์˜ ์ž„๊ณ„ ํ˜„์ƒ์„ ๋‹ค๋ฃฌ๋‹ค. ๋จผ์ €, ์Œ๊ทน์ž ์ƒํ˜ธ ์ž‘์šฉํ•˜๋Š” ๋ฆฌ๋“œ๋ฒ„๊ทธ ์›์ž์˜ ์‹คํ—˜์—์„œ์˜ ๊ตฌํ˜„ ๊ฐ€๋Šฅ์„ฑ์„ ํ†ตํ•ด ์šฐ๋ฆฌ๋Š” ๋จผ๊ฑฐ๋ฆฌ ์ƒํ˜ธ ์ž‘์šฉํ•˜๋Š” ์–‘์ž ์ ‘์ด‰ ๊ณผ์ •์„ ์—ฐ๊ตฌํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๋ณดํŽธ์„ฑ์˜ ๊ด€์ ์—์„œ ๋ดค์„ ๋•Œ, ๋จผ๊ฑฐ๋ฆฌ ์ƒํ˜ธ ์ž‘์šฉํ•˜๋Š” ๊ณ„๋Š” ๋‹จ๊ฑฐ๋ฆฌ ์ƒํ˜ธ ์ž‘์šฉํ•˜๋Š” ๊ณ„์™€ ๋‹ค๋ฅธ ๋ณดํŽธ์„ฑ ๊ตฐ์„ ๊ฐ–๋Š”๋‹ค. ์ด์™€ ๊ด€๋ จํ•˜์—ฌ ์šฐ๋ฆฌ๋Š” ๋จผ๊ฑฐ๋ฆฌ ์ƒํ˜ธ ์ž‘์šฉ์ด ๊ด€๋ จ์žˆ๋Š” ๊ตฌ๊ฐ„์— ๋Œ€ํ•ด ์ƒˆ๋กœ์šด ๊ณ ์ „์  ๋ณดํŽธ์„ฑ์ด ์–ป์–ด์ง€๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ•˜์˜€๊ณ  ์ด๋ฅผ ``๋จผ๊ฑฐ๋ฆฌ ์‚ผ์ค‘ ์ž„๊ณ„ ์Šค๋ฏธ๊ธฐ ๊ตฐ''๋ผ๊ณ  ๋ถˆ๋ €๋‹ค. ๋จผ๊ฑฐ๋ฆฌ ์ƒํ˜ธ ์ž‘์šฉ์ด ๊ด€๋ จ์ด ์—†๋Š” ์˜์—ญ์˜ ๊ฒฝ์šฐ ๋จผ๊ฑฐ๋ฆฌ ๋ชจ๋ธ์˜ ํ‰๊ท  ์žฅ ์œ„์ƒ ๋‹ค์ด์–ด๊ทธ๋žจ์€ ๋‹จ๊ฑฐ๋ฆฌ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ์–‘์ž ์ ‘์ด‰ ๊ณผ์ •์˜ ์ƒ ๋‹ค์ด์–ด๊ทธ๋žจ์— ํ•ด๋‹นํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์šฐ๋ฆฌ๋Š” ์žฅ๊ฑฐ๋ฆฌ ์ƒํ˜ธ ์ž‘์šฉํ•˜๋Š” ์‚ผ์ค‘ ๋””๋ ‰ํ‹ฐ๋“œ ์Šค๋ฏธ๊ธฐ ๊ตฐ์˜ ๋‚ฎ์€ ์ฐจ์› ๋ฌผ๋ฆฌ๋ฅผ ์žฌ๊ทœ๊ฒฉํ™” ๊ตฐ๊ณผ ๋ชฌํ…Œ ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ด์šฉํ•˜์—ฌ ๊ณต๋ถ€ํ•œ๋‹ค. ๋จผ๊ฑฐ๋ฆฌ ์ƒํ˜ธ ์ž‘์šฉ์˜ ๊ฐ•๋„์— ๋”ฐ๋ผ ํ‰๊ท ์žฅ ๋จผ๊ฑฐ๋ฆฌ ์‚ผ์ค‘ ์ž„๊ณ„ ์Šค๋ฏธ๊ธฐ ๊ตฐ์—์„œ ๋‹จ๊ฑฐ๋ฆฌ ์‚ผ์ค‘ ์ž„๊ณ„ ์Šค๋ฏธ๊ธฐ ๊ตฐ์œผ๋กœ ์—ฐ์†์ ์œผ๋กœ ๋ฐ”๋€Œ๋Š” ๊ฒƒ์„ ํ™•์ธ ํ–ˆ๋‹ค. ์ผ์ฐจ์›๊ณผ ์ด์ฐจ์› ์–‘์ž ์ ‘์ด‰ ๊ณผ์ •์„ ํƒ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด, ์šฐ๋ฆฌ๋Š” ๊ธฐ๊ณ„ ํ•™์Šต๊ณผ ์–‘์ž ์ ํ”„ ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ํ…์„œ ๋„คํŠธ์›Œํฌ ๊ฐ™์€ ์–‘์ž ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ด์šฉํ–ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ผ์ฐจ์›์—์„œ ์–‘์ž ์Šค๋ฏธ๊ธฐ ๊ตฐ์—์„œ ๋””๋ ‰ํ‹ฐ๋“œ ์Šค๋ฏธ๊ธฐ ๊ตฐ์œผ๋กœ ๋ฐ”๋€Œ๋Š” ๊ต์ฐจ ๊ตฌ๊ฐ„์„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. ์ด ๊ต์ฐจ ๊ตฌ๊ฐ„์€ ์–‘์ž์ ์ธ ๊ณผ์ •์ด ์ž„๊ณ„ ํ˜„์ƒ์— ๊ด€๋ จ์ด ์žˆ๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ, ์šฐ๋ฆฌ๋Š” ์ด๋Ÿฌํ•œ ๊ต์ฐจ ๊ตฌ๊ฐ„์„ ํ™•์ธํ•  ์‹คํ—˜์ ์ธ ๊ตฌ์„ฑ์„ ์ œ์•ˆ ํ–ˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ์šฐ๋ฆฌ๋Š” ์†Œ์‹ค ์–‘์ž ์ƒ์ „์ด์˜ ํ‰๊ท ์žฅ ํ˜„์ƒ์„ ๋ชจ๋‘ ์—ฐ๊ฒฐ๋œ ๊ทธ๋ž˜ํ”„์—์„œ์˜ ์ˆœ์—ด ๋Œ€์นญ์„ ์ด์šฉํ•˜์—ฌ ํƒ๊ตฌํ•˜์˜€๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ์šฐ๋ฆฌ๋Š” ์†Œ์‹ค ์–‘์ž ์ด์ง• ๋ชจ๋ธ, ์†Œ์‹ค XY ๋ชจ๋ธ, ์–‘์ž ์ ‘์ด‰ ํ”„๋กœ์„ธ์Šค๋ฅผ ๊ณ ๋ คํ•˜์˜€๋‹ค. ์†Œ์‹ค ์–‘์ž ์ด์ง• ๋ชจ๋ธ์— ๋Œ€ํ•ด ๋ชจ๋“  ์˜์—ญ์—์„œ ์—ฐ์† ์ƒ์ „์ด๋ฅผ ๋ณด์•˜๊ณ  ์†Œ์‹ค XY ๋ชจ๋ธ์—์„œ๋Š” ๋ถˆ์—ฐ์† ์ƒ์ „์ด๋ฅผ ๋ณด์•˜๋‹ค. ์ด๋Š” ์ผˆ๋””์‰ฌ ๋ฐฉ๋ฒ•๊ณผ๋Š” ์ƒ๋ฐ˜๋˜๋Š” ๊ฒฐ๊ณผ์ด๊ณ  ์š”๋™์—†๋Š” ํ‰๊ท ์žฅ ์ด๋ก ์˜ ๋ฐฉ๋ฒ•๊ณผ ์ผ์น˜ํ•œ๋‹ค. ๋˜ํ•œ ์–‘์ž ์ ‘์ด‰ ํ”„๋กœ์„ธ์Šค์˜ ์ƒ์ „์ด๋Š” ์ค€๊ณ ์ „์  ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•œ ํ’€์ด์™€ ์ƒ์ „์ด ์„ ๊ณผ ๋ณดํŽธ์„ฑ์€ ์ผ์น˜ํ–ˆ์ง€๋งŒ, ์ผ์ฐจ์› ์–‘์ž ์ ‘์ด‰ ํ”„๋กœ์„ธ์Šค์—์„œ ๋ณธ ๊ฒƒ๊ณผ ๊ฐ™์ด ๊ต์ฐจ ๊ตฌ๊ฐ„์„ ํ™•์ธํ–ˆ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ์šฐ๋ฆฌ๋Š” ์–‘์ž ์ ‘์ด‰ ๊ณผ์ •์˜ ํ‰๊ท ์žฅ๊ณผ ๋‚ฎ์€ ์ฐจ์›์—์„œ์˜ ์ƒ์ „์ด ๋‹ค์ด์–ด๊ทธ๋žจ์„ ๋ณด์˜€๋‹ค.1 Introduction 1 1.1 Classical contact process model 3 1.2 Rydberg atomic experiment 4 1.3 Quantum contact process 6 1.4 Overview of thesis 7 2 Nonequilibrium phase transitions in classical systems 11 2.1 Introduction 11 2.2 MSRJD field theory 12 2.3 Contact process 14 2.3.1 Upper critical dimension and mean-field critical exponents 15 2.3.2 Below the upper critical dimension: the ฮต-expansion 16 2.4 Contact process with long-range interaction 21 2.4.1 Upper critical dimension and mean-field critical exponents 22 2.4.2 Below the upper critical dimension: the ฮต-expansion 24 2.5 Tricritical contact process 27 2.5.1 Phase diagram 28 2.5.2 Upper critical dimension and mean-field critical exponents 29 3 Nonequilibrium phase transition in open quantum systems 30 3.1 Introduction 30 3.2 Equations of motion for the long-range quantum contact process 33 3.2.1 Lindblad equation 33 3.2.2 Total Hamiltonian 35 3.2.3 Quantum Langevin equation 38 3.3 Mean-field result 42 3.3.1 Mean-field equations 42 3.3.2 Phase diagram 43 3.4 Scaling behavior 48 3.4.1 Phenomenological equation 48 3.4.2 Critical exponents and upper critical dimensions 53 3.5 Discussion and Conclusion 57 4 Numerical simulation of long-range TDP in low dimensions 59 4.1 Introduction 59 4.2 LTCP model 64 4.3 Critical behavior of the absorbing transition 65 4.4 Analytic results 68 4.4.1 Phase diagram in the mean-field limit 68 4.4.2 Hyperscaling relation for LTDP 70 4.5 Numerical Results 72 4.5.1 STCP model in two dimensions 72 4.5.2 LTCP model in two dimensions 78 4.5.3 LTCP model in one dimension 82 4.6 Conclusion and Discussion 88 5 Simulation method of quantum systems 93 5.1 Quantum jump Monte Carlo method 93 5.1.1 Derivation 94 5.2 Tensor network method 96 5.2.1 Matrix product state 96 5.2.2 Time evolving block decimation 97 6 Critical behavior of 1d-QCP and 2d-QCP using quantum simulations 99 6.1 Introduction 99 6.2 Model 104 6.3 Results 107 6.3.1 NN approach 107 6.3.2 Finite-size scaling analysis for 1d-QCP 109 6.3.3 Finite-size scaling analysis for 2d-QCP 113 6.4 Discussion 114 7 Phase transitions in the infinite dimensional dissipative quantum systems 119 7.1 Introduction 119 7.2 Method 121 7.3 Results 122 7.3.1 Dissipative transverse Ising model 122 7.3.2 Driven-dissipative XY model 124 7.3.3 Quantum contact process 125 7.4 Comparison with quantum jump Monte Carlo simulation 130 7.5 Summary and Conclusions 130 8 Conclusion 132 Appendix A Appendix of chapter 1 136 A.1 Realization of classical contact process by Rydberg atomic experiment 136 A.1.1 Lindblad equation for Rydberg gases 136 A.1.2 Derivation of transition rate in classical limit 138 A.1.3 Derivation of classical rate 143 Appendix B Appendix of chapter 2 145 B.1 Jacobian 145 B.2 Correlation of noise variables 146 B.2.1 Kramers-Moyal expansion 146 B.2.2 Equivalence between Fokker-Planck equation and Langevin equation 146 B.2.3 Application to contact process 148 B.3 Continuum limit 149 B.4 Rapidity-reversal symmetry 150 B.5 Homogeneous mean-field equation of the CP 151 B.6 Wickโ€™s theorem 151 B.7 Momentum space representation and bare propagator (Greenโ€™s function) 151 B.8 Derivation of the fractional Laplacian in continuum limit 153 Appendix C Appendix of chapter 4 156 C.1 Coarse-grained variables 156 C.2 Calculation of propagator 157 C.3 Tables of numerical estimates 161 Appendix D Appendix of chapter 6 163 D.1 Classical contact process using the quantum jump Monte Carlo method 163 D.2 Test of scaling relations using classical Monte Carlo simulations 164 D.3 Critical behavior by neural network approach with different training regions 165 Appendix E Appendix of chapter 7 170 E.1 Fluctuationless mean-field approach for DTI 170 E.2 Phase transition in parameter space (โˆ†, ฮ“) at J = 1 171 E.3 Fluctuationless mean-field approach for driven-dissipative XY model 172 E.4 Fluctuationless mean-field approach for QCP 173 E.5 Observables of a single initial condition for QCP 174 Bibliography 175 Abstract in Korean 200Docto
    corecore