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Abstract

Nonequilibrium phase transitions in open
quantum systems

Minjae Jo
Department of Physics and Astronomy

The Graduate School
Seoul National University

Recent advances in cold atomic physics offer a platform to explore non-equilibrium

phase transition in open quantum many-body systems. Such nonequilibrium critical

phenomena originate from the competition between quantum fluctuations (coherent

Hamiltonian) and classical fluctuations (incoherent dissipation). In this regard, the fun-

damental question arises as to whether the system exhibits novel universal behavior in

which the quantum fluctuations are relevant. If it does not exhibit novel universality,

it may reduce to the classical universality, and is described as so-called “quantum-to-

classical mapping”. Many studies have been devoted to this question, but it has not

been fully understood yet.

In this dissertation, we aim to investigate this question by considering the many-

body physics of the quantum contact process (QCP), which is a generalization of the

classical contact process belonging to the directed percolation (DP) class. The DP class

is the most robust and well-studied class in classical nonequilibrium systems. The QCP

has additional quantum processes to the DP class, and the quantum fluctuations may

affect the universality class. Moreover, the QCP is experimentally feasible in ultra-cold

Rydberg atomic systems.
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Specifically, this dissertation presents recent studies related to critical phenom-

ena of the QCP. Firstly, motivated by the Rydberg atomic experiment with the dipole-

dipole interaction, we investigate QCP with the long-range interactions using the semi-

classical approach. Generally, a system with long-range interaction can exhibit differ-

ent universality from the corresponding system with short-range interaction. In this

regard, we find that the novel classical universality is obtained for the regime where

the long-range interaction is relevant, and it is called the “long-range tricritical DP

class”. For the regime where the long-range interaction is irrelevant, the mean-field

phase diagram of our long-range model corresponds to that of the ordinary QCP. Next,

we study the low-dimensional physics of the long-range tricritical directed percolation

class using renormalization group theory and Monte Carlo simulation. Depending on

the strength of the long-range interaction, we find that the universality class is changed

from the mean-field long-range tricritical DP to ordinary tricritical DP.

To investigate the one-dimensional and two-dimensional QCP, we use machine

learning and quantum simulations such as quantum jump Monte Carlo simulation and

tensor network method. We find that in one dimension, there exists the crossover re-

gion, along which the critical exponents continuously varies from a quantum DP to

the DP class. This indicates that the quantum coherent process is relevant to the crit-

ical phenomena. We also propose an experimental setting to investigate the crossover

region.

In addition, we investigate the mean-field behavior of dissipative quantum sys-

tems using the permutational symmetry of fully-connected graph. Specifically, we

consider the dissipative transverse Ising (DTI) model, driven-dissipative XY model,

and QCP. We find that the DTI model exhibits a continuous phase transition for the

entire parameter space, and the driven-dissipative XY model shows a discontinuous

phase transition, contrary to the results from Keldysh formalism. Instead, those cor-

respond to the fluctuationless MF approach. In addition, the phase transitions of QCP
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shows that the transition line and universality class correspond to the semi-classical

approach, whereas there exists a crossover region analogous to the one-dimensional

QCP. Finally, we present the phase diagram of the QCP including the mean-field and

low-dimensional cases.

Keywords: Open quantum systems, Nonequilibrium phase transition, Dissipative

phase transitions, Quantum contact process, Semi-classical field theory, Machine

learning, Finite-size scaling analysis

Student number: 2015-20353
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of the coherent dynamics (ω in Ĥs). The long-range interaction is rel-

evant (irrelevant) for p ≤ 2 (p > 2). Depending on whether u3 = 0 or

u3 > 0, dc and β can vary. . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Reaction schemes of the CP, TCP, and LTCP. A (0) represents the ac-

tive (inactive) state. TCP∗ denotes the TCP model. When the Lévy ex-
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Chapter 1

Introduction

Understanding the many-body systems has been one of the major challenges in theoret-

ical physics. As in the Andersons’s [1] “more is different”, a large coupled degrees of

freedom can behave completely different way, which cannot be understood sorely by

the laws governing their microscopic components. Nonetheless, the many-body sys-

tems with different microscopic components can exhibit identical physics. This can be

understood by the concept of the universality in which macroscopic physics does not

depend on the microscopic details, but the symmetry, range of interactions, and spatial

dimension. Based on the concept of universality, many-body systems are investigated

for various classical and quantum systems.

One of the simplest examples is the classical Ising model. In the Ising model,

the ferromagnetic system contains either a down or an up spin at each site of a d-

dimensional lattice. The nearest-neighbor interaction denoted as J tends to align to

the same direction; and temperature denoted as T makes the thermal fluctuations in

spin states. When T/J� 1, the interaction dominates the thermal fluctuations, and all

spin states tend to align in the same direction. This state is called the ferromagnetic

phase. Otherwise, when T/J � 1, the thermal fluctuations dominate the interaction,

and all spin states are random. This state is called the paramagnetic phase. Increasing

the parameter T/J from a low temperature in the ferromagnetic phase, the spin align-

ment gets gradually randomized by the thermal fluctuations, and eventually becomes

the paramagnetic phase at the critical point, Curie temperature Tc. Thus, the phase

transition occurs between two phases. At the critical point Tc, the observables such
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as the degree of spins alignment significantly fluctuate and diverge with power-law

singularities. The exponent of the singularity of physical observables is described by

critical exponents, and the complete set of the critical exponents forms the universality

class. The critical phenomena of many-body systems can be categorized into univer-

sality classes and members of the same class have identical critical behavior. Examples

include the liquid-gas transition and the (uniaxial) ferromagnetic-paramagnetic phase

transition belonging to the 3D Ising class [2]. The universality classes derived through

theoretical methods such as renormalization group approach [3] and Monte Carlo sim-

ulations are in good agreement with those found in experiments.

Naturally, interest turned to the closed quantum many-body systems, i.e. phase

transitions are driven by quantum fluctuations rather than thermal fluctuations. For

instance, the quantum Ising model. At zero temperature, the quantum phase transi-

tion occurs from the ferromagnetic phase to the paramagnetic phase depending on the

strength of the transverse field. At the quantum critical point, the critical phenom-

ena originate from the quantum fluctuations in contrast to the classical Ising model.

Hence, the critical may be expected to behave differently from that of the classical

model. Specifically, for the 1d quantum Ising model, quantum fluctuations affect the

universal behavior and the critical exponents are different with 1d Ising exponents.

Instead, the critical exponents of the 1d transverse Ising model correspond to the 2d

Ising exponents. Thus, there exists so-called a quantum-to-classical mapping, where

the d-dimensional quantum model corresponds to (d+1)-dimensional classical model.

This concept was proposed based on the field-theoretical argument that imaginary time

in the quantum system acts as an additional dimension in the corresponding classical

system. By a quantum-to-classical mapping [4], many models in closed quantum sys-

tems are explained by the classical universality.

Meanwhile, recent experimental advances in open quantum systems opened the

opportunity to realize the models showing the nonequilibrium phase transitions. In

open quantum systems, the phase transition arises from the competition between co-
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herent Hamiltonian dynamics and the incoherent dissipation process. These systems

have intensely debated [5–17] whether the role of quantum fluctuations leads to a

novel universality class [7, 17], or under what condition the universality class is clas-

sically described [9, 10, 12]. In this dissertation, we aim to investigate the possibility

of the novel universality classes in open quantum systems. To be more specific, we

consider the collective phenomena of the quantum contact process motivated the ultra-

cold Rydberg atomic experiment. In what follows, we will present the motivation of

the quantum contact process. To this end, we briefly introduce the classical contact

process model, the experimental realization of the classical contact process, and the

quantum contact process.

1.1 Classical contact process model

In nonequilibrium systems, the most robust universality class is the directed percola-

tion (DP) universality, class. In other words, many models belong to the DP class; the

examples are the Domany-Kinzel cellular automata [18], branching annihilating ran-

dom walks with an odd number of offsprings [19], and the contact process model [20].

Among these models, the most well-known and simplest model for directed percola-

tion (DP) universality class is the contact process. In the contact process, each element

of the system is in an active or inactive state, and its state changes according to the

following rules.

i) Decay: an active particle becomes inactive at a rate of γ .

ii) Branching: an inactive particle becomes active at a rate of κ when it contacts a

neighboring active particle.

Depending on rates for decay and branching, the active sites may either spread over

the whole system or disappear after some time. Once the inactive site becomes extinct

where the dynamics become trapped in a nonfluctuating so-called “absorbing state”.

The system can enter this state, but cannot leave it. Thus, a detailed balance is violated.
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If κ/γ is small, the system falls into an absorbing state. Otherwise, it is in an active

state. Thus the system undergoes a continuous phase transition with the DP class (See

Sec. 2 for more theoretical details).

Although the DP class is theoretically well established, the experimental realiza-

tion of DP behavior has been elusive for two decades. It was only recently that the

contact process model is realized using a cold Rydberg atomic experiment. This ex-

periment will be introduced in the next section.

1.2 Rydberg atomic experiment

Let us consider the Rydberg atom represented by two spin states, |↓〉 and |↑〉 which are

the eigenstates of the Pauli matrix of the z direction, where the up spin state indicates

the Rydberg excitation. We start with the Hamiltonian in the rotating-wave approxi-

mation of the N coupled Rydberg atoms on a lattice as follows:

ĤR = Ω

N∑
`

σ̂
x
` +∆

N∑
`

n̂`+
∑
6̀=m

V`m

2
n̂`n̂m, (1.1)

where Ω and ∆ are the Rabi frequency induced by the external laser and detuning

strength, respectively. Here σ̂ i
` denotes the Pauli matrix, where the superscript and

subscript stand for the spin axis and site index, respectively, and n̂` means the number

operator for the up spin at the `th site. Using the ladder operators σ̂+ =|↑〉〈↓| and

σ̂− =|↓〉〈↑|, we express the Pauli matrix of the x direction as σ̂ x = σ̂++ σ̂− and with

the projection n̂=|↑〉〈↑|. The third term in the r.h.s in Eq. (1.1) describes the interaction

between up spins, where V`m is a power-law decaying function of the distance,

V`m =
Cp

|xl−xm|p
, (1.2)

where Cp is the dispersion coefficient [21] and xl is the position of the lth site. Note

that p characterizes the interaction [21]; p = 3 for the dipole interaction associated
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with the d-orbital excitation, and 6 for the van der Waals interaction with the s-orbital

excitation. For the case of p= 6 in Eq. (1.2), the interaction is fast decaying in distance

so that the dynamics is effectively dominated by the nearest-neighbor interaction [22].

In the limit of ∆� Ω, |V`m|, the Rabi oscillation is suppressed due to the large

energy gap between up and down spin states, implying that a spin configuration, for

an example |a〉 = | · · · ↓↓↑ · · · 〉 may be approximately an eigenstate of HR. There-

fore, given an initial spin configuration, there is no fluctuation in time. However, if

V`m = −∆ for the nearest-neighbor pair ` and m and the `th spin is up, the mth spin

can fluctuate with Ω. This is a so-called antiblockade mechanism in which an excited

atom facilitates Rabi oscillation at the nearest-neighbor atom. This is reminiscent of

the branching process in the CP. In fact, there is an additional process called the co-

agulation process in which an excited atom facilitates the nearest-neighbor atom from

up spin to down spin. Although this process do not belong to the CP model, this is not

a problem to realize the DP class because the coagulation process is irrelevant, i.e. it

does not affect the universal behavior. The effective Hamiltonian can be described in

one dimension:

Ĥeff = Ω

∑
`

P̂̀ σ̂
x
` , (1.3)

where the projection operator is given by P̂ = n̂`−1 + n̂`+1− 2n̂`−1n̂`+1. We are in-

terested near the critical point, where the low-density limit leads to P̂ ≈ n̂`−1 + n̂`+1.

In order to realize the classical contact process, the coherence should be suppressed.

This is achieved via the strong dephasing rate denoted as Γ. Additionally, the decay

in the classical contact process is implemented by the radiative decay from |↑〉 to |↓〉

with zero-temperature heat bath with a rate γ . In the strong dephasing limit, it was

revealed that the coherent dynamics can be neglected so that the effective Hamilto-

nian in Eq. (1.3) is effectively classicalized and reduces as the following two Lindblad
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operators [23].

L̂(b)
` =

√
κ P̂̀ σ̂

+
` , L̂(c)

` =
√

κ P̂̀ σ̂
−
` , L̂(d)

` =
√

γ σ̂
−
` (1.4)

where κ = 4Ω2/Γ. The derivation of the strong dephasing limit is described using

superoperator formalism in Appendix A.1. Thus the classical contact process is theo-

retically derived as well as experimentally realized [24].

Motivated by this experimental set-up, the classical contact process in Eq. (1.4) can

be generalized by adding the coherent branching and coagulation Eq. (1.3). Then, this

model is called the quantum contact process [25, 26], which offers the simple model

exhibiting nonequilibrium phase transitions in open quantum systems.

1.3 Quantum contact process

We consider a one-dimensional quantum spin chain with a periodic boundary condi-

tion, where each state of a site (active or inactive) represents the up or down spin state,

denoted as |↑〉 or |↓〉 . The time evolution of the density matrix ρ̂ is described by the

Lindblad equation, which consists of the Hamiltonian and dissipative terms [27]:

∂t ρ̂ =−i
[
ĤS, ρ̂

]
+
∑

a=d,b,c

N∑
`=1

[
L̂(a)
` ρ̂L̂(a)†

` − 1
2

{
L̂(a)†
` L̂(a)

` , ρ̂
}]

. (1.5)

The Hamiltonian ĤS, which governs the branching and coagulation processes and rep-

resents coherent interactions, is expressed as

ĤS = ω

N∑
`=1

[
(n̂`−1 + n̂`+1) σ̂

x
`

]
. (1.6)
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The Lindblad decay, branching, and coagulation operators are given by

L̂(d)
` =

√
γ σ̂
−
` , (1.7)

L̂(b)
` =

√
κ (n̂`−1 + n̂`+1)σ̂

+
` , (1.8)

L̂(c)
` =

√
κ (n̂`−1 + n̂`+1)σ̂

−
` , (1.9)

respectively.

Quantum branching and coagulation occur at a rate of ω , and the corresponding

classical processes occur at a rate of κ . When ω→ 0, the model is reduced to the clas-

sical CP, which belongs to the DP class. When ω is small, inactive particles become

more abundant with time, and eventually, the system is fully occupied by inactive par-

ticles. Thus, the system is no longer dynamic and falls into an absorbing state, which

is represented by ρ̂ab = |↓ · · · ↓〉〈↓ · · · ↓|. When ω is large, the system remains in an

active state with a finite density of active particles. Thus, the QCP exhibits a phase

transition from an active to an absorbing state as ω is decreased.

1.4 Overview of thesis

This thesis presents recent studies of the critical behavior of the open quantum many-

body systems. It focuses on the analytical and numerical methods to investigate the

universality class in open quantum many-body systems. Specifically, we deal with the

quantum contact process by semi-classical field-theoretic calculations, classical and

quantum Monte-Carlo simulation, and machine learning methods. Furthermore, we

cover the numerical technique to investigate the mean-field beahvior in large qubit

size.

In chapter 2, we provide background physics of preliminary knowledge in the clas-

sical field theory [28–30]. The readers already familiar with the classical field theory

may skip this chapter without any loss in continuity. The absorbing state phase tran-

sition of the classical contact process is presented with the microscopic rules. More-
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over, the MSRJD field-theoretical approach is presented from the classical Langevin

equation. Then, mean-field critical exponents by scaling theory are obtained. Next, the

renormalization group approach to obtain the critical exponents below the upper criti-

cal dimension will be introduced. Finally, we apply the field-theoretic approach to the

long-range contact process model and the tricritical contact process model. We hope

this is helpful to understand the chapter 3.

In chapter 3, we consider a quantum spin model with a long-range QCP [31],

where the branching and coagulation processes are allowed not only for the nearest-

neighbor pairs but also for long-distance pairs, coherently and incoherently. Using the

semi-classical approach, we show that the mean-field phase diagram of our long-range

model is similar to that of the nearest-neighbor QCP [25, 26], where the continuous

(discontinuous) transition is found in the weak (strong) quantum regime. However, at

the tricritical point, we find a new universality class, which was neither that of the

QCP at the tricritical point nor that of the classical directed percolation model with

long-range interactions. Implementation of the long-range QCP using interacting cold

gases is discussed.

In chapter 4, we deeply study the new universality class obtained in chapter 3. To

this end, we extend the tricritical CP model to one with long-range interaction [32]. In

particular, we investigate the properties of the long-range tricritical DP (LTDP) class

below the upper critical dimension. We numerically obtain a set of critical exponents

in the LTDP class. Finally, we construct a diagram of universality classes.

In chapter 5, we present the quantum simulation methods. Firstly, the exact nu-

merical method for open quantum systems called quantum jump Monte Carlo simula-

tion [33] is introduced. This approach is able to simulate up to the system size N ∼ 25.

Secondly, the tensor network approach [34, 35] based on the matrix product state and

the time-evolving block decimation is presented. This method approximately consid-

ers the low-entangled state so that it is able to simulate up to the system size N ∼ 100.

These methods will be used in the next chapter.
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In chapter 6, we investigate one and two-dimensional quantum contact process us-

ing quantum simulations [36]. We find the crossover from a quantum to a classical

absorbing phase transition arising in the one-dimensional quantum contact process.

We find that in one dimension, when the QCP starts from a homogeneous state with

all active sites, there exists a critical line in the region 0 ≤ κ < κ∗, along which the

exponent α associated with the density of active sites decreases continuously from a

quantum to the classical directed percolation (DP) value. This behavior implies that

the quantum coherent effect still remains to some extent in the region near κ = 0. This

anomalous crossover behavior allows us to measure the display between the quantum

DP and classical DP effect using the Rydberg atom experiment. However, when the

QCP starts from a heterogeneous state with all inactive sites but one active site in one

dimension, all critical exponents have the classical DP values for κ ≥ 0. In two dimen-

sions, the anomalous crossover behavior does not occur and the classical DP behavior

appears in the entire region of κ ≥ 0 regardless of initial configurations. The neural

network machine learning technique is used to identify the critical line and to deter-

mine the correlation length exponent. Numerical simulations using the quantum jump

Monte Carlo technique and the tensor network method are performed to determine all

the other critical exponents of the QCP.

In chapter 8, we investigate the mean-field behavior of dissipative quantum sys-

tems using the permutational symmetry of fully-connected graph [37]. Recently, the

phase transitions and critical phenomena of the dissipative quantum systems were an-

alytically investigated via various theoretical approaches. Numerical verifications are

crucial for the phenomena, because sometimes theoretical make predictions that are

contradictory to each other. However, numerical verifications are still missing due to

the exponential computational complexity of the quantum systems. Here, we use the

exact numerical solution to unveil the mean-field (MF) behavior of the dissipative

transverse Ising (DTI) model, driven-dissipative XY model, and quantum contact pro-

cess (QCP). We find that the DTI model exhibits a continuous phase transition for the
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entire parameter space, and the driven-dissipative XY model shows a discontinuous

phase transition, contrary to the results from Keldysh formalism. Instead, those corre-

spond to the fluctuationless MF approach. The phase transitions of QCP shows that the

transition line and universality class correspond to the semi-classical approach; how-

ever, we discover a crossover region analogous to the one-dimensional QCP, which is

not predicted by theoretical methods. Finally, we identify various advantages of the

exact numerical method and compare it with quantum jump Monte Carlo simulation.

Conclusions are followed in Chapter 8.
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Chapter 2

Nonequilibrium phase transitions in classical sys-

tems

In this chapter, we briefly provide the classical field theory, and the readers already

familiar with the concept may skip this chapter. For the classical field theory, we rec-

ommend the excellent review article [28] and books [29, 30].

2.1 Introduction

Field-theoretic approaches and the renormalization group (RG) method have had a

huge contribution in our understanding of the universal critical behaviors that emerge

near critical points. In this chapter, we describe the collective behaviors of systems,

which undergoes a continuous nonequilibrium phase transition with displaying generic

scale invariance. We then deal with capturing the stochastic dynamics of the long-

wavelength (q→ 0) modes of the order parameter, any conserved quantities, and addi-

tional relevant variables.

Specifically, we describe how a representation in terms of a field-theoretic action

can be obtained for general non-linear Langevin stochastic differential equations. We

will then demonstrate how the perturbative RG can be employed to derive the asymp-

totic scaling laws in classical stochastic systems. Moreover, we obtain the upper criti-

cal dimension dc (for dimensions d ≤ dc, low-dimensional fluctuations strongly affect

the universal properties) and systematically compute the critical exponents.

In case of the real-space RG, the RG transformation consists of the elimination of
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microscopic degrees of freedom (coarse-graining) and rescaling. This transformation

changes the system’s properties away from the critical point, where the system exhibits

only finite characteristic length scales. However, at critical point there are no finite

correlation lengths and thus the properties of the system remain unaffected by the

rescaling procedure (i.e. we look the system larger and larger). In this way, critical

point corresponds to a fixed point of the renormalization transformation.

The universality does not depend on the microscopic details but specified by the

three factors: the symmetry, range of the interactions, and its spatial dimension. In

Sec. 2.2, we review the well-established Martin–Siggia–Rose–Janssen–de Dominicis

(MSRJD) approach, and then we apply this theory into some systems such as the con-

tact process (CP) [Sec. 2.3], the CP with long-range interactions [Sec. 3.4], and the

tricritical CP [Sec. 2.5]. Apparently, those three models have different universality

classes with CP since long-ranged CP (tricritical CP) is different the range of the in-

teractions (symmetry) from CP.

2.2 MSRJD field theory

In this section, we consider Martin–Siggia–Rose–Janssen–de Dominicis (MSRJD) ap-

proach, which is the field-theoretic representation of Langevin equations. Let us begin

our discussion by constructing a path integral reformulation of Langevin equations.

Equations of motion of nonequilibrium system are represented by Langevin equation,

which is given by

∂tn = F [n]+ξ , (2.1)

where n = n(xxx, t) is a time-dependent random variable, F [n] = F [n(xxx, t)] a function,

and ξ = ξ (xxx, t) a noise term. Gaussian noise field ξ (xxx, t), which is defined by its cor-
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relations

〈ξ (xxx, t)ξ (xxx′, t ′)〉= ΓN[n(xxx, t)]δ d(xxx− xxx′)δ (t− t ′) . (2.2)

N[n(xxx, t)] can be a constant for Brownian motion or n(xxx, t) for directed percolation.

Generally, N[n] ∝ O(n) is termed the multiplicative noise. Partition function is de-

fined as the functional integral over all realizations of field n(xxx, t) and the noise ξ (xxx, t)

which satisfy the Langevin equation. Then, partition function may then be formally

represented as

Z =

∫
Dn〈δ (∂tn−F [n]−ξ )〉ξ =

∫
Dn
∫

Dξ P(ξ )δ (∂tn−F [n]−ξ ) , (2.3)

where Jacobian is a constant in Ito discretization (see Appendix B.1). Representing the

δ -function in Eq. (2.3) in terms of a Fourier integral

Z =

∫
Dn
∫

Dξ exp
(
−
∫

dt
∫

ddx
ξ 2

2ΓN[n]

)
×
∫

Dñexp
(
−
∫

dt
∫

ddx
[
ñ(∂tn−F [n]−ξ )

])
=

∫
Dn
∫

Dñexp
(
−
∫

dt
∫

ddx
[
ñ(∂tn−F [n]− Γ

2
ñN[n])

])
, (2.4)

where ñ is the auxiliary field. The partition function with a statistical weight deter-

mined by the action

S =

∫
dt
∫

ddx
[
ñ(∂tn−F [n]− Γ

2
ñN[n])

]
. (2.5)

Next sections will be devoted to different universality classes such as DP universality,

long-ranged DP universality, and TDP universality.
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2.3 Contact process

The microscopic rules of the (classical) contact process presented in Sec. 1.1. The

mean-field Langevin equation of the density of active sites n is given by

∂tni(t) =−γni(t)+
κ

z

∑
〈i, j〉

n j(t)(1−ni(t))+ξi(t) , (2.6)

where z = 2d is a number of the nearest-neighbors and 〈i, j〉 stands for the nearest

neighbor of i. The noise ξi(t) is a multiplicative Gaussian random variable with zero

mean and whose correlation [Appendix B.2] is

〈ξi(t)ξ j(t ′)〉= Γnδi, jδ (t− t ′) . (2.7)

It is convenient to adopt a continuum description (see Appendix B.3), in which n

represents the local particle density. Rescaling the time t → γt or equivalently γ = 1,

Eq. (2.6) is given as follows.

∂tn = D∇
2n− (1−κ)n−κn2 +ξ , (2.8)

where D is a diffusion constant.

Using the Martin–Siggia–Rose–Janssen–Dominicis (MSRJD) formalism presented

in previous section, we obtain the action as follows:

S =

∫
dt
∫

ddx
[
ñ
(

∂tn−D∇
2n− (κ−1)n+κn2− Γ

2
ñn
)]

. (2.9)
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2.3.1 Upper critical dimension and mean-field critical exponents

We obtained the action of CP by MSRJD field-theoretic approach, which is rewritten

as

S =

∫
dt
∫

ddx
[
ñ
(

τ∂tn−D∇
2n+u2n+u3n2− Γ

2
ñn
)]

, (2.10)

where τ = 1, u2 ≡ 1−κ , and u3 ≡ κ . To symmetrize the cubic terms, rescaling n→√
Γ

2u3
n, ñ→

√
2u3
Γ

ñ, and
√

Γu3
2 → u3, the action is written as

S =

∫
dt
∫

ddx
[
ñ
(
τ∂t −D∇

2 +u2
)

n+u3ñ(n− ñ)n
]
. (2.11)

Physical properties remain the same if we change the spatio-temporal coordinates scale

by a constant factor. Under the scaling transformations, which are given by

x→ x′ =
x
s
, t→ t ′ =

t
sz , n→ n′ = sχn , ñ→ ñ′ = sχ̃ ñ , (2.12)

where s> 1. The action Eq. (2.10) has the rapidity-reversal symmetry (see Appendix B.4)

which implies that the χ = β/ν⊥ and χ̃ = β̃/ν⊥ have to be identical. Under the trans-

formation given by Eq. (2.34), S[n, ñ]→ S′[n′, ñ′] is given by

S′ =
∫

dt ′
∫

ddx′ sd+z
[
ñ′
(

τs−z−2χ
∂t ′−Ds−2−2χ

∇
′2 +u2s−2χ

)
n′+u3s−3χ ñ′(n′− ñ′)n′

]
.

(2.13)

Therefore, we obtain the following relations of the parameters under the scaling trans-

formation:

τ → τ
′ = sd−2χ

τ , D→ D′ = sd+z−2−2χ D , u2→ u′2 = sd+z−2χ u2 ,

u3→ u′3 = sd+z−3χ u3 . (2.14)

15



To make the fluctuations scale invariant at the critical point u2 = 0, we must ensure that

the action stays fixed. Thus we choose χ = d/2 in order to be invariant of temporal

fluctuations scale and then choose z = 2 in order to be invariant of spatial fluctuations

scale. The cubic term is rescaled as u′3 = s2−d/2u3. Thus for d > dc = 4 where dc is

the upper critical dimension, u3 is irrelevant, which means that the action becomes

the Guassian (quadratic) function in Eq. (2.13). For this reason, the fixed point above

the upper critical dimension is called the Gaussian fixed point. For d < 4, u3 becomes

relevant. In this case, the Gaussian fixed point is shifted due to the higher-order terms,

leading to the Wilson-Fisher fixed point, which will be discussed in next subsection.

Finally, we can compute the mean-field critical exponents. Homogeneous mean-

field solution gives the critical exponent β = 1 [Appendix B.5]. Thus, we can obtain

ν⊥ = β/χ = 0.5 and z = 2. The independent critical exponents of DP universality is

three, and thus critical exponents other than {β , ν⊥, z} are computed using the scaling

relations.

2.3.2 Below the upper critical dimension: the ε-expansion

We obtained the upper critical dimension and the mean-field critical exponents in pre-

vious subsection. Whereas the mean-field exponents are valid above the upper critical

dimension, below the upper critical dimension, the low-dimensional fluctuations make

the relevant effects and violate mean-field picture. Slightly below the upper critical

dimension, say d = dc− ε , we could compute the critical exponents by using the per-

turbation expansion (ε-expansion). Similarly to equilibrium phase transition, we can

define the elements of the graphical ε-expansion. In RG transformation, we use the

Wick’s theorem [Appendix B.6] and the following cumulant expansion.

Cumulant expansion: In the presence of the interaction term, the expectation of
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any observable O is given by

〈O〉=
∫

DnOe−S0−Sint∫
Dne−S0−Sint

=

∫
DnOe−S0 [1−Sint +S2

int/2−·· · ]∫
Dne−S0 [1−Sint +S2

int/2−·· · ]

=
Z0[〈O〉0−〈OSint〉0 + 〈OS2

int〉0/2−·· · ]
Z0[1−〈Sint〉0 + 〈S2

int〉0/2−·· · ]
, (2.15)

where S0 is the free quadratic action and Sint = S− S0 is the interacting action as

follows:

S0 =

∫
dt
∫

ddx
[
ñ
(
τ∂t −D∇

2 +u2
)

n
]
, Sint =

∫
dt
∫

ddx
[
u3ñ(n− ñ)n

]
.

(2.16)

Expanding the denominator gives

〈O〉=
[
〈O〉0−〈OSint〉0 +

〈OS2
int〉0

2
−·· ·

]
×
[
1+ 〈Sint〉0 + 〈Sint〉20−

〈S2
int〉0
2
−·· ·

]
= 〈O〉0−

(
〈OSint〉0−〈O〉0〈Sint〉0

)
+

1
2

(
〈OS2

int〉0−2〈OSint〉0〈Sint〉0 +2〈O〉0〈Sint〉20−〈O〉0〈S2
int〉0

)
+ · · ·

≡
∞∑

n=0

(−1)n

n!
〈OSn

int〉c0 . (2.17)

The connected averages (cumulants) are defined as the combination of unperturbed ex-

pectation values appearing at various orders in the expansion. As you already know, the

terms in the perturbation series get complicated. Feynman developed a useful Feynman

diagram which has the one-to-one correspondence to a term in perturbation series.

Now, let us consider the renormalization group transformation: rescaling and coarse

graining.

1) Rescaling : We already conducted this process in Eq. (2.14), expanding s = 1+ l
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Figure 2.1: RG transformation regularized with a hard cutoff Ω: rescaling and coarse-
graining.

Figure 2.2: Elements of the graphical perturbation expansion of DP: (a) bare propaga-
tor; (b) bare three-point vertex function.

Figure 2.3: One-loop Feynman diagrams for DP: (a) two-point green function; (b) two-
point vertex function; (b) three-point non-linear function; (c) three-point noise vertex.

for (l� 1).

D′ = [1+ l (d + z−2−2χ)]D , τ
′ = [1+ l (d−2χ)]τ ,

u′2 = [1+ l (d + z−2χ)]u2 , u′3 = [1+ l (d + z−3χ)]u3 . (2.18)

2) Coarse-graining : Integrating out degrees of freedom. The graphical loops are

depicted in Fig. 2.1 where an arrow marks a ñ-leg represented as dotted lines. We

draw diagrams with the arrows always directed to the left (ascending time order-

ing from right to left). The bare propagator [Appendix B.7] and vertex functions

are shown in Fig. 2.2. One-loop diagrams are shown in Fig. 2.3. From the cumu-

lant expansion, one can obtain the propagator −G′′−1(k, ω) = −G′−1(k, ω)+
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Fig. 3(a) with G−1(k, ω)=Dk2−iωτ−u2 and the vertex−u′′3 =−u′3+Fig. 3(b).

Fig. 3(a) =−2(
u3

2
)2
∫

ddk′dω ′

(2π)d+1 G(
k
2
+ k′,

ω

2
+ω

′)G(
k
2
− k′,

ω

2
−ω

′)

=−2(
u3

2
)2
∫

ddk′

(2π)d

∫
∞

−∞

dω ′

2π

1
D(k/2+ k′)2−u2− i(ω/2+ω ′)τ

1
D(k/2− k′)2−u2− i(ω/2−ω ′)τ

=−(u3

2
)2
∫

ddk′

(2π)d
1

τ(Dk2/4+Dk′2−u2− iωτ/2)
, (2.19)

Fig. 3(b) = 16(
u3

2
)3
∫

ddkdω

(2π)d+1 G2(k,ω)G(−k,−ω)

= 16(
u3

2
)3
∫

ddk
(2π)d

∫
∞

−∞

dω

2π

1
(Dk2−u2− iωτ)2

1
Dk2−u2 + iωτ

= 4(
u3

2
)3
∫

ddk
(2π)d

1
τ(Dk2−u2)2 . (2.20)

This is when regularization comes into play. Here, we use the hard cutoff regu-

larization scheme in which we integrate out up to Ω [Fig. 2.1]. We remark that

dimensional regularization with Ω→ ∞ can also be used with minimal subtrac-

tion (see Section 10 of Ref. [11]). With the hard cutoff regularization scheme,

Eq. (2.19) and Eq. (2.20) can be calculated as

Fig. 3(a) =−(u3

2
)2
∫

ddk′

(2π)d
1

τ(Dk2/4+Dk′2−u2− iωτ/2)

=−
u2

3
4(2π)dτ

∫
Ω(1+l)

Ω

dk′
k′d−1Sd

Dk2/4+Dk′2−u2− iωτ/2

=−
u2

3SdΩd l
4τ(2π)d

1
Dk2/4+DΩ2−u2− iωτ/2

=−
u2

3SdΩd l
4τ(2π)d

( 1
DΩ2−u2

− D
4(DΩ2−u2)2 k2 +

iτ
2(DΩ2−u2)2 ω + · · ·

)
,

(2.21)
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Fig. 3(b) = 4(
u3

2
)3
∫

ddk
(2π)d

1
τ(Dk2−u2)2 =

u3
3SdΩd l

2τ(2π)d(DΩ2−u2)2 . (2.22)

The coupling constants are changed in coarse-graining as following:

D′′ = D′−
u2

3lSdΩd

16τ(2π)d(DΩ2−u2)2 , τ
′′ = τ

′−
u2

3lSdΩd

8(2π)d(DΩ2−u2)2 ,

u′′2 = u′2−
u2

3lSdΩd

4τ(2π)d(DΩ2−u2)
, u′′3 = u′3−

u3
3SdΩd l

2τ(2π)d(DΩ2−u2)2 .

(2.23)

Finally, enumerating the rescaling [Eq. (2.18)] and coarse-graining [Eq. (2.23)], we

obtain the RG flow equations

∂lD = D(d +2χ + z−2−S1) , ∂lτ = τ(d +2χ−2S1) ,

∂lu2 = u2(d +2χ + z−S2) , ∂lu3 = u3(d +3χ + z−8S1) , (2.24)

where S1 =
u2

3lSdΩd

16τ(2π)d(DΩ2−u2)2 and S2 =
u2

3lSdΩd

4τu2(2π)d(DΩ2−u2)
. In order to make the fluctua-

tions scale invariant, we set ∂lD = 0 and ∂lτ = 0. Then Eq. (2.24) becomes

∂lu2 = u2(S1−S2 +2) , ∂lu3 = u3

(
ε

2
−6S1

)
, (2.25)

where d = 4− ε . In the (u2, u3)-plane, fixed points are given by

u∗2 =
4D∗Ω∗2ε

24+5ε
' D∗Ω∗2

6
ε +O(ε2) ,

u∗3 =
(2D∗(ε +24)

24+5ε

√
τε(2π)4

3S4

)2
' 4D∗Ω∗2τ∗(2π)4

3S4
ε +O(ε2) . (2.26)

The non-trivial fixed point is called the Wilson-Fisher fixed point. The linearized RG
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flow is governed by the matrix

M =

 ∂ (∂lu2)
∂u2

∣∣∣
u∗2,u

∗
3

∂ (∂lu2)
∂u3

∣∣∣
u∗2,u

∗
3

∂ (∂lu3)
∂u2

∣∣∣
u∗2,u

∗
3

∂ (∂lu3)
∂u3

∣∣∣
u∗2,u

∗
3

=

 2− ε

4 −
√

SdΩ4

3τ(2pi)4 ε

0 −ε

 . (2.27)

The eigenvalues of this matrix are λ1 = 2−ε/4 and λ2 =−ε . Here the first eigenvalue

is positive and represents the repulsive line of the renormalization group flow, meaning

that u2 diverges as eλ1 the fixed point is approached. Since u2 plays the role of the

reduced percolation probability (mass gap), we may identify ν
−1
⊥ = 2− ε/4. From

∂lD = 0 and ∂lτ = 0, χ = β/ν⊥ = 2−7ε/12 and z = 2−ε/12, which gives the critical

exponents as follows:

ν⊥ =
1
2
+

ε

16
+O(ε2) , β = 1− ε

6
+O(ε2) , ν‖ = 1+

ε

12
+O(ε2) . (2.28)

2.4 Contact process with long-range interaction

According to the DP conjecture, nonequilbrium phase transitions with short-range in-

teraction generally falls into DP class. In many realistic spreading processes, however,

interactions are long-ranged described by Lèvy flights P(r) ∼ r−d−σ . In the presence

of the long-range interaction, the rules of CP are modified as follows.

i) Decay : an active particle becomes inactive at a rate γ .

ii) Branching : an inactive particle becomes active at a rate κP(r) when it contacts

a distant active particle.

The mean-field Langevin equation of the density of active sites n is given by

∂tni(t) =−γni(t)+κ

∑
j 6=i

P(|rrri− rrr j|)n j(t)(1−ni(t))+ξi(t) . (2.29)

It is convenient to adopt a continuum description (see Appendix B.8), in which n rep-

resents the local particle density. Rescaling the time t → γt or equivalently γ = 1,
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Eq. (2.29) is given as follows.

∂tn = D∇
2n+Dσ ∇

σ n− (1−κ)n−κn2 +ξ , (2.30)

where D and Dσ are a diffusion constant.

Using the Martin–Siggia–Rose–Janssen–Dominicis (MSRJD) formalism presented

in previous section, we obtain the action as follows:

S =

∫
dt
∫

ddx
[
ñ
(

∂tn−D∇
2n−Dσ ∇

σ n+(1−κ)n+κn2− Γ

2
ñn
)]

. (2.31)

2.4.1 Upper critical dimension and mean-field critical exponents

We obtained the action of long-ranged CP by MSRJD field-theoretic approach, which

is rewritten as

S =

∫
dt
∫

ddx
[
ñ
(

τ∂tn−D∇
2n−Dσ ∇

σ n+u2n+u3n2− Γ

2
ñn
)]

, (2.32)

where τ = 1, u2 ≡ 1−κ , and u3 ≡ κ . To symmetrize the cubic terms, rescaling n→√
Γ

2u3
n, ñ→

√
2u3
Γ

ñ, and
√

Γu3
2 → u3, the action is written as

S =

∫
dt
∫

ddx
[
ñ
(
τ∂t −D∇

2−Dσ ∇
σ +u2

)
n+u3ñ(n− ñ)n

]
. (2.33)

By the scale invariance, action should be invariant if we change the spatio-temporal

coordinates scale by a constant factor. Under the scaling transformations, which are

given by

x→ x′ =
x
s
, t→ t ′ =

t
sz , n→ n′ = sχn , ñ→ ñ′ = sχ̃ ñ , (2.34)

where s> 1. The action Eq. (2.32) has the rapidity-reversal symmetry (see Appendix B.2)

which implies that the χ = β/ν⊥ and χ̃ = β̃/ν⊥ have to be identical. Under the trans-
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formation given by Eq. (2.34), S[n, ñ]→ S′[n′, ñ′] is given by

S′ =
∫

dt ′
∫

ddx′ sd+z
[
ñ′
(

τs−z−2χ
∂t ′−Ds−2−2χ

∇
′2−Dσ s−σ−2χ

∇
′σ +u2s−2χ

)
n′

+u3s−3χ ñ′(n′− ñ′)n′
]
. (2.35)

Therefore, we obtain the following relations of the parameters under the scaling trans-

formation:

τ → τ
′ = sd−2χ

τ , D→ D′ = sd+z−2−2χ D , Dσ → D′σ = sd+z−σ−2χ Dσ ,

u2→ u′2 = sd+z−2χ u2 , u3→ u′3 = sd+z−3χ u3 . (2.36)

To make the fluctuations scale invariant at the critical point u2 = 0, we must ensure

that the action stays fixed. For σ > 2, Dσ is irrelevant; however, D is relevant, where

the universality belongs to DP class (see Sec. 2.3). On the other hand, for σ < 2, D be-

comes irrelevant; however, Dσ becomes relevant. From now on, we focus on the region

where Dσ is relevant for σ < 2. Thus we choose χ = d/2 in order to be invariant of

temporal fluctuations scale. Similarly, by choosing z = σ , spatial fluctuations become

scale invariant. The cubic term is rescaled as u′3 = sσ−d/2u3. Thus for d > dc = 2σ

where dc is the upper critical dimension, u3 is irrelevant, which means that the ac-

tion becomes the Guassian (quadratic) function in Eq. (2.35). For this reason, the fixed

point above the upper critical dimension is called the Gaussian fixed point. For d < 2σ ,

u3 becomes relevant. In this case, the Gaussian fixed point is shifted due to the higher-

order terms, leading to the Wilson-Fisher fixed point, which will be discussed in next

subsection.

Finally, we can compute the mean-field critical exponents. Homogeneous mean-

field solution gives the critical exponent β = 1 [Appendix B.4]. Thus, we can obtain

ν⊥ = β/χ = 1/σ and z = σ .
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2.4.2 Below the upper critical dimension: the ε-expansion

Comparing with the action of DP class, long-range DP has the fractional Laplacian

in quadratic term. Thus, the only difference is the Green’s function. The Green func-

tion is changed from G(k,ω) = (Dk2− iωτ +u2)
−1 (see Appendix B.7) to G(k,ω) =

(Dσ kσ − iωτ +u2)
−1. Since the cubic terms remain the same, one-loop Feynman dia-

grams is not changed (see Fig. 2.2 and Fig. 2.3). Here, we shall calculate the one-loop

propagator and show that one-loop diagram does not contribute to the coefficient Dσ .

1) Rescaling : We already conducted this process in Eq. (2.36), expanding s = 1+ l

for (l� 1).

D′σ = [1+ l (d + z−σ −2χ)]Dσ , τ
′ = [1+ l (d−2χ)]τ ,

u′2 = [1+ l (d + z−2χ)]u2 , u′3 = [1+ l (d + z−3χ)]u3 . (2.37)

2) Coarse-graining : Integrating out degrees of freedom. The bare propagator and

vertex functions are shown in Fig. 2.2. One-loop diagrams are shown in Fig. 2.3.

From the cumulant expansion, one can obtain the propagator −G′′−1(k, ω) =

−G′−1(k, ω)+Fig. 3(a) with G(k,ω) = (Dσ kσ − iωτ +u2)
−1.

Fig. 3(a) =−2(
u3

2
)2
∫

ddkkk′dω ′

(2π)d+1 G(
kkk
2
+ kkk′,

ω

2
+ω

′)G(
kkk
2
− kkk′,

ω

2
−ω

′)

=−2(
u3

2
)2
∫

ddkkk′

(2π)d

∫
∞

−∞

dω ′

2π

1
Dσ |kkk/2+ kkk′|σ −u2− i(ω/2+ω ′)τ

1
Dσ |kkk/2− kkk′|σ −u2− i(ω/2−ω ′)τ

=−2(
u3

2
)2
∫

ddkkk′

(2π)d
1

τ(Dσ |kkk/2+ kkk′|σ +Dσ |kkk/2− kkk′|σ −2u2− iωτ)
.

(2.38)
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Since k is very small in long-wavelength limit, we may expand the denominator

|kkk/2+ kkk′|σ = k′σ
∣∣∣1+ k cosθ

k′
+

k2

4k′2

∣∣∣σ/2

= k′σ +
σ cosθ

2
k′σ−1k+

(
σ

8
+

σ(σ −2)
8

cos2
θ

)
k′σ−2k2 +O(k3) ,

(2.39)

where O(kσ ) vanishes during the expansion. Therefore Eq. (2.38) becomes

Fig. 3(a) =−2(
u3

2
)2
∫

ddkkk′

(2π)dτ

[
2Dσ k′σ +

Dσ σ

4
k′σ−2k2

+
Dσ σ(σ −2)

4
cos2

θk′σ−2k2−2u2− iωτ)
]−1

=−
lΩdSd−1u2

3
2τ(2π)d

∫
π

0
dθ sind−2

θ

[
2Dσ Ω

σ −2u2− iωτ +
Dσ σ

4
Ω

σ−2k2

+
Dσ σ(σ −2)

4
cos2

θΩ
σ−2k2)

]−1
, (2.40)

where Sd = 2πd/2/Γ(d/2) is the solid angle. Let us expand the last term in

Eq. (2.40) with respect to k and ω .

Fig. 3(a)'−
lΩdSd−1u2

3
2τ(2π)d

∫
π

0
dθ sind−2

θ

[ 1
2Dσ Ωσ −2u2

+
iτ

(2Dσ Ωσ −2u2)2 ω

− Dσ σΩσ−2 +Dσ σ(σ −2)cos2 θΩσ−2

4(2Dσ Ωσ −2u2)2 k2
]
. (2.41)

Using the relation
∫

π

0 sind−2
θ = Sd/Sd−1,

∫
π

0 sind−2
θ cos2 θ = Sd/dSd−1, we

finally obtain

Fig. 3(a) =−
lΩdSdu2

3
4τ(2π)d

[ 1
Dσ Ωσ −u2

+
iτ

2(Dσ Ωσ −u2)2 ω

− Dσ σΩσ−2 +Dσ σ(σ −2)Ωσ−2/d
8(Dσ Ωσ −u2)2 k2

]
. (2.42)

Clearly, O(kσ ) does not exist in Eq. (2.42), which means that coarse graining

does not contribute to D′σ , i.e. D′′σ = D′σ .
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Thus, plugging this relation into Eq. (2.37), D′′σ = D′σ = [1+ l(d + z−σ − 2χ)]Dσ

or equivalently ∂lDσ = d + z−σ − 2χ . Similarly to Sec. 2.3, in order to make the

fluctuations scale invariant, we set ∂lDσ = 0, which gives the hyperscaling relation

d + z−σ −2χ = 0 . (2.43)

Figure 2.4: Universality class diagram of long-range DP in the parameter space (d, σ ).

Now, let us consider the universality class diagram for (d, σ ). We obtained the up-

per critical dimension dc = min(2σ , 4) and the hyperscaling relation d+ z−σ−2χ =

0 which is valid for d < dc and the region that fractional Laplacian is relevant. In

Fig. 2.4, the upper critical dimension is represented as the bold line. Since the hyper-

scaling relation is valid for long-range DP regime and the critical exponents of long-

range DP are changed continuously to short-range DP, the dots in Fig. 2.4 are obtained

the hyperscaling relation σ∗ = d + zSR− 2χSR, where zSR and χSR are the numerical

values of the short-range DP.
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2.5 Tricritical contact process

As we discussed in Sec. 2.1, the universality class may be changed when symmetry

is broken. The symmetry of DP class is the rapidity-reversal symmetry, which implies

that the critical exponent of n and ñ should be the same. In this section, we shall

deal with the tricritical contact process (TCP) whose rapidity-reversal symmetry of

CP is broken due to the higher-order interaction. In the presence of the higher-order

interaction, the rules of CP are modified as follows.

i) Decay : an active particle becomes inactive at a rate γ .

ii) Branching : an inactive particle becomes active at a rate κ when it contacts a

neighboring active particle.

iii) Pair branching : an inactive particle becomes active at a rate ω when it contacts

a pair of the active particles.

The mean-field Langevin equation of the density of active sites n is given by

∂tni(t) =−γni(t)+
κ

z

∑
〈i, j〉

n j(t)(1−ni(t))+
ω

2(z−1)

∑
〈i, j〉

∑
〈i, j,k〉

nkn j(1−ni(t))+ξi(t) ,

(2.44)

where z = 2d is a number of the nearest-neighbors and 〈i, j,k〉 stands for the nearest

neighbor of a pair of i and j. The noise ξi(t) is a multiplicative Gaussian random

variable with zero mean and whose correlation [Appendix B.2] is

〈ξi(t)ξ j(t ′)〉= Γnδi, jδ (t− t ′) . (2.45)

It is convenient to adopt a continuum description (see Appendix B.3), in which n

represents the local particle density. Rescaling the time t → γt or equivalently γ = 1,
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Eq. (2.44) is given as follows.

∂tn = D∇
2n− (1−κ)n− (κ−ω)n2−ωn3 +ξ , (2.46)

where D is a diffusion constant.

2.5.1 Phase diagram

In this subsection, we shall deal with the phase diagram of the TCP. Firstly, let us

consider the homogeneous mean-field equation give by

∂tn = D∇
2n−u2n−u3n2−u4n3 +ξ , (2.47)

where u2 = 1−κ , u3 = κ−ω , and u4 = ω . In steady-state [∂tn = 0], we obtain solu-

tions as

n∗ = 0 and n∗ = n∗± ≡
−u3±

√
u2

3−4u2u4

2u4
. (2.48)

Performing the linear stability analysis, we find that the first solution n = 0 is stable

for u2 > 0 and unstable for u2 < 0. Thus, u2 = 1−κ = 0 is the boundary of the stable

solution at the fixed point n = 0, equivalent to the boundary of active phase in Fig. 2.5.

For the second solution n∗a,±, we perform the linear stability analysis as

δ ṅ∗± =−(u2 +2u3n∗±+3u4n∗2± )δn± (2.49)

= n∗±(−u3−2u4n∗±)δn± =∓n∗±
√

u2
3−4u2u4δn± . (2.50)

Thus, n∗+ and n∗− are stable for n∗+ > 0 and n∗− < 0, respectively. Because the negative

density is not physically acceptable, n∗− is ignored. For n = n∗+, the phase boundary is
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obtained by the conditions u2
3−4u2u4 = 0 and u3 ≤ 0. These conditions lead to

(κ +ω)2−4ω = 0 for κ < ω , (2.51)

where n∗+ ≥ 0. This phase boundary is drawn by white dashed curve in Fig. 2.5.

Figure 2.5: Phase diagram of TCP in the parameter space (κ,ω).

2.5.2 Upper critical dimension and mean-field critical exponents

Using the Martin–Siggia–Rose–Janssen–Dominicis (MSRJD) formalism presented in

previous section, we obtain the action as follows:

S =

∫
dt
∫

ddx
[
ñ
(

∂tn−D∇
2n+u2n+u3n2 +u4n3− Γ

2
ñn
)]

. (2.52)

This action will be found in the next chapter from the quantum model with different

microscopic rules.
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Chapter 3

Nonequilibrium phase transition in open quantum

systems

A large part of this chapter is published in Ref. [31].

3.1 Introduction

Nonequilibrium phase transitions into an absorbing state have been extensively studied

[20,28,29,38–45]. However, in recent years, they have attracted a significant amount of

attention because some of these transitions have been experimentally realized in turbu-

lence [46] and dissipative Rydberg atom quantum systems [24]. One of the most robust

classes of absorbing transitions is the directed percolation (DP) class [28, 29, 42–44],

in which the dynamics spreads by a contact process (CP). An active particle becomes

inactive at a rate γ , whereas an inactive particle becomes active at a rate κ when it con-

tacts a neighboring active particle. If κ/γ is small, the system falls into an absorbing

state. Otherwise, it is in an active state. The CP model can be used for modeling the

epidemic spread of infectious disease and the reaction–diffusion process of interacting

particles. On the other hand, the Reggeon field theory reveals the universal properties

of the DP class [47, 48].

The CP can be generalized in various ways. Here, we introduce two cases asso-

ciated with the main topic of this paper. One is the long-range CP. This process was

inspired by disease contagion by long-distance insect flight. We recall a simple lattice

model associated with the long-range CP [49–52], in which the activation process is
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modified as follows. At a rate κP(x), each active particle activates an inactive par-

ticle at distance |x| in a random direction. P(x) is thought to follow the power law

P(x) ∼ 1/|x|d+p, where d is the spatial dimension, and p > 0 is a control parame-

ter. Owing to the long-range interaction, the transition property of the DP class can

be changed when p < pc, where pc depends on the dimension d [50]. When p > pc,

the long-range interaction is irrelevant. The other variant is the so-called tricritical

CP [53–57]. In this modification, in addition to the ordinary CP, an inactive particle

becomes active at a rate ω when it contacts two consecutive active particles. This tri-

critical CP exhibits a first-order transition for κ < ω and a second-order transition for

κ > ω . Thus, a tricritical point occurs at κ = ω with the tricritical directed percolation

(TDP) class.

Although the DP class is theoretically well established, experimental realization

of DP behavior has been elusive. It was only recently that two experiments associated

with this DP class were implemented [24, 46]. We are particularly interested in the

experiment in dissipative quantum systems of Rydberg atoms. An essential factor for

realizing the DP class in Rydberg atoms is the antiblockade effect. An inactive spin

is activated by detuning the excitation energy so that it is comparable to the energy

of interaction with the active spin of the nearest neighbor [58, 59]. This is reminiscent

of the branching process in the CP. We remark that the antiblockade dynamics can be

implemented incoherently when strong dephasing noise is applied. Then, quantum co-

herence becomes negligible, and the dynamics is reduced to the classical DP process.

When quantum coherence is effective, this case is called the quantum contact process

(QCP), and coherent and incoherent CPs can be realized simultaneously [25,26]. Com-

petition between the two types of process leads to the TDP class at the tricritical point.

This resembles the behavior of spin glass systems, in which competing interactions be-

tween spins generate a negative cubic term of the Landau free energy and a tricritical

point. In the strong quantum regime, the system undergoes a discontinuous transition.

When Rydberg atoms interact via the dipole–dipole interaction, it is natural to
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consider cold atomic systems with long-range interaction. Similar studies of dipole–

dipole interactions were performed in quantum systems associated with several phe-

nomena, for instance, quantum magnetism [60–62], Anderson localization [63–65],

Rydberg energy transport [66], and Rydberg blockade [67]. However, the long-range

Rydberg atom system under the antiblockade condition has not been investigated yet,

even though the results are expected to contribute to theoretical development of the

QCP. In this paper, we consider the long-range QCP in the open quantum spin system.

We set up the Lindblad equation for the density matrix in terms of the Hamiltonian

with long-range interaction and the dissipators for decay and long-range branching

and coagulation. Using mean-field (MF) theory, we obtain a phase diagram including

absorbing and active states, and discontinuous and continuous transition curves with

a tricritical point. This diagram is similar to that of the classical TDP model. How-

ever, the continuous transition changes from the ordinary DP to the long-range DP

class [49, 52]. The TDP transition at the tricritical point also changes. We expect it

to be in a long-range TDP class corresponding to the TDP; however, it has not been

explored yet. Using the scaling argument, we determine the critical exponents of the

long-range TDP in the MF limit. Moreover, we determine the upper critical dimension.

The remainder of this paper is organized as follows. In Sec. 3.2.2, we derive the

quantum Langevin equation of the long-range QCP. The MF equation and its phase di-

agram are presented in Sec. 3.3, and the scaling behavior and upper critical dimension

are presented in Sec. 3.4. Finally, we conclude our work and discuss the relationship

between our model and the behavior of interacting cold gases in Sec. 3.5.
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3.2 Equations of motion for the long-range quantum contact

process

3.2.1 Lindblad equation

The Lindblad equation describes a quantum system coupled to the environment in the

context of the Born–Markov approximation [27]. We consider a quantum spin model

on a d-dimensional lattice, where each spin state denotes the state of a single atom at a

site with |↑〉 , that is, an active state, and |↓〉 , that is, an inactive state. Interactions be-

tween atoms and between atoms and the baths may result in the dynamics of the QCP,

which are described by the Lindblad equation. The equation is generally composed of

the Hamiltonian and dissipative terms. Our equation also contains the coherent terms

for branching and coagulation and incoherent ones for not only branching and coagu-

lation, but also decay of active states (see Fig. 1), and is given by

∂t ρ̂ = −i
[
ĤS, ρ̂

]
+
∑

l

[
L̂(d)

l ρ̂L̂(d)†
l − 1

2

{
L̂(d)†

l L̂(d)
l , ρ̂

}]
+
∑
i=b,c

∑
l,m

[
L̂(i)

ml ρ̂L̂(i)†
ml −

1
2

{
L̂(i)†

ml L̂(i)
ml , ρ̂

}]
, (3.1)

where the Hamiltonian ĤS is defined as

ĤS = ω

∑
l,m

P(|xm−xl|)
(
n̂mσ̂

+
l + n̂mσ̂

−
l

)
, (3.2)

and the Lindblad jump operators of decay, branching, and coagulation are given by

L̂(d)
l =

√
γσ̂
−
l , (3.3)

L̂(b)
ml = [κP(|xm−xl|)]1/2 n̂mσ̂

+
l , (3.4)

L̂(c)
ml = [κP(|xm−xl|)]1/2 n̂mσ̂

−
l , (3.5)

33



incoherent  coherent

incoherent  

l lγ

̂d†
l,q

m l

lmlmlmlm

κPml

κPml

ωPml
b̂†

l,q

̂c†
l,q

Figure 3.1: Schematic of QCP with long-range interaction in one dimension. In this
model, there are two incoherent processes and one coherent process, which are repre-
sented by the total Hamiltonian in Eq. (3.7). The incoherent processes are induced by
interaction with harmonic baths. The first incoherent process decays each site (denoted
as l) by raising the harmonic bath’s state at the rate γ , given by the second summation
term in Eq. (3.8). The second incoherent process consists of branching and coagula-
tion. Specifically, if site m is in an active state, site l branches (coagulates) at a rate
κPml via directional links (denoted as ml) by raising the bath’s state, which is given by
the second summation term in Eqs. (3.9) and (3.10). The rate decreases algebraically
as the distance increases. Similarly, the coherent process, which consists of quantum
long-range branching and coagulation and involves the off-diagonal elements of the
density matrix during the dynamics, is induced by the system Hamiltonian [Eq. (3.2)].

respectively. Here, σ̂
+
l and σ̂

+
l are the raising and lowering operators of the spin at

site l, respectively, which are defined in terms of the spin basis as σ̂+ = |↑〉〈↓| and

σ̂− = |↓〉〈↑|.

Because n̂l is the number operator of the active state, n̂ = |↑〉〈↑|, the composite

operator n̂mσ̂
+
l or n̂mσ̂

−
l with l 6= m means that the active state at site m activates

or deactivates the state at l, representing the branching and coagulation processes, as

seen in Eqs. (3.2), (3.4), and (3.5). Instead, L̂(d)
l denotes the decay dynamics of the

active state at l. Therefore, if there is no active state, no further dynamics occurs,

implying an absorbing state. Note that m and l need not be a nearest-neighbor pair in

the interaction. Indeed, P(|xm−xl|) in the dynamic equation [Eq. (6.1)] represents the
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Lévy distribution, which decays as

P(|xm−xl|)∼ 1/|xm−xl|p+d , (3.6)

and which determines the amplitude of the long-range interaction. Here, we set P(|xm−

xl|) = 0 when m = l. In addition, the distribution satisfies the normalization condition,

∑
m

P(|xm−xl|) =
∑

l

P(|xm−xl|) = 1 .

It is obvious that the dynamics of populations (the diagonal elements of ρ̂) in

Eq. (6.1) in the absence of coherent dynamics is equivalent to the ordinary long-range

contact process. Consequently, depending on parameters such as κ and γ , the steady

state for ω = 0 shows the active or inactive phase, and the transition between them

belongs to the long-range DP universality class. If ω is increased, the coherence may

change the nature of the transition in the system. Note that in the limit p→ ∞, our

model becomes equivalent to the nearest-neighbor QCP in previous works [25, 26].

3.2.2 Total Hamiltonian

By solving the Lindblad equation, Eq. (6.1), one may find the phase diagram of the

system; however, this is not easy when system size N becomes large, N� 1. Instead,

in this work we take the semiclassical approach starting with the quantum Langevin

equation, as seen in previous works for the nearest-neighbor QCP [25, 26].

To derive the Langevin equations, we first set the equivalent Hamiltonian for a

system with N spins, Nb harmonic baths, and their interactions, where Nb is given by

Nb = 2N2−N, as follows. The total Hamiltonian should be given by

Ĥtot = ĤS +
∑

l

Ĥd(l)+
∑
m,l

[
Ĥb(m, l)+ Ĥc(m, l)

]
, (3.7)

where ĤS is the same as in Eq. (3.2). There are three types of Hamiltonians for the
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baths and interactions (see Fig. 1). First, the Hamiltonian Ĥd , which corresponds to

the decay process, is assigned to each spin, and Ĥd(l) defined on spin l is then given

by

Ĥd(l) =
∑

q

θqd̂†
l,qd̂l,q +

∑
q

[
λqd̂†

l,qσ̂
−
l +h.c.

]
, (3.8)

where θq denotes the energy of bath particles with momentum q, and h.c. stands for

the Hermitian conjugate. Here, d̂†
l,q and d̂l,q are the creation and annihilation operators,

respectively, of particles of the bath associated with spin l, and λq is the coupling

strength of the decay process of the active state accompanied by emission of a single

bath particle. Note that baths having different site indices are mutually independent,

which is represented in the commutation relation for d̂†
l,q and d̂l,q, that is, [d̂l,q, d̂

†
m,q′ ] =

δl,mδq,q′ .

The other Hamiltonians, for branching (Ĥb) and coagulation (Ĥc), are defined at

each link (l,m) with direction, which means Ĥb(c)(m, l) 6= Ĥb(c)(l,m). The branch-

ing and coagulation Hamiltonians are also given by the bath energy and interactions,

similar to that of the decay process. Because branching and coagulation are allowed

between long-distance spins, the interaction between the system and bath particles

contains the distribution P(|xm−xl|), so the Hamiltonians are given by

Ĥb(m, l) =
∑

q

φqb̂†
ml,qb̂ml,q +

∑
q

[
χq
√

Pml b̂†
ml,q n̂mσ̂

+
l +h.c.

]
,

(3.9)

Ĥc(m, l) =
∑

q

φqĉ†
ml,qĉml,q +

∑
q

[
χq
√

Pml ĉ†
ml,q n̂mσ̂

−
l +h.c.

]
,

(3.10)

where Pml is shorthand notation for the Lévy distribution. Further, b̂ml,q and ĉml,q are

also operators of the harmonic baths defined on the directional link, which satisfy the

commutation relation, [b̂ml,q, b̂
†
m′l′,q] = δl,l′δm,m′ (the relations for ĉlm,q and ĉ†

lm,q are

obtained by replacing b̂ and b̂† with ĉ and ĉ†, respectively). Further, φq and χq are the
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energy function and coupling between the system and baths, respectively, where the

branching and coagulation Hamiltonians share the same functions. Note that we have

thus used Nb independent baths, including N decay, N(N−1) branching, and N(N−1)

coagulation baths.

To obtain Eq. (6.1) for the density operator, we consider that the bath is in a pure

state |0〉B with zero temperature such that d̂|0〉B = b̂|0〉B = ĉ|0〉B = 0. Following the

Born–Markov approximation, where the density operator of the total system can be

given approximately by the product state, ρ̂(t)⊗ ρ̂B, with the stationary bath density

ρ̂B = |0〉〈0|B [27], the density operator ρ̂(t +dt) is given by

ρ̂(t +dt) = trB

{
e−idtĤtot ρ̂(t)⊗|0〉〈0|BeidtĤtot

}
. (3.11)

Expanding the evolution operators up to the second order of dt and using 〈ĤI〉B, where

ĤI is the part of Eq. (3.7) representing the interaction between the system and bath,

and 〈·〉B denotes 〈0| · |0〉B with the bath state, we write Eq. (3.11) up to the order of

dt2:

ρ̂(t +dt) = ρ̂(t)− idt
[
ĤS, ρ̂(t)

]
(3.12)

+dt2
(

ĤSρ̂(t)ĤS−
1
2
{

Ĥ2
S , ρ̂(t)

})
+dt2

(
〈ĤI ρ̂(t)⊗|0〉〈0|BĤI〉B−

1
2
{
〈Ĥ2

I 〉B, ρ̂(t)
})

.

Because 〈d̂qd̂†
q〉B = 1, 〈b̂qb̂†

q〉B = 1, and 〈ĉqĉ†
q〉B = 1, and otherwise the correlators of
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bath particles are zero, the third line in Eq. (3.12) can be written as

dt2
∑

l

∑
q

λ
2
q

[
σ̂
−
l ρ̂
(
σ̂
−
l

)†− 1
2

{(
σ̂
−
l

)†
σ̂
−
l , ρ̂

}]
+dt2

∑
l,m

∑
q

χ
2
q Pml

[
n̂mσ̂

+
l ρ̂
(
n̂mσ̂

+
l

)†− 1
2

{(
n̂mσ̂

+
l

)† n̂mσ̂
+
l , ρ̂

}]

+dt2
∑
l,m

∑
q

χ
2
q Pml

[
n̂mσ̂

−
l ρ̂
(
n̂mσ̂

−
l

)†− 1
2

{(
n̂mσ̂

−
l

)† n̂mσ̂
−
l , ρ̂

}]
.

In accordance with the Weisskopf–Wigner theory [68], we extract the slow mode of

bath particles around q = 0 by setting λq ≈ λq=0 and χq ≈ χq=0. Then, the summations

over q become
∑

q λ 2
q ≈ λ 2

0
∑

q and
∑

q χ2
q ≈ χ2

0
∑

q. To evaluate
∑

q, we use the

definition of the Dirac delta function, (2π)−1∑
q exp(−iωqτ) = δ (τ), with a linear

function ωq of q. Inserting τ = 0 in both exp(−iωqτ) and δ (τ), one can see

dt2
λ

2
0

∑
q

→ dt 2πλ
2
0 , dt2

χ
2
0

∑
q

→ dt 2πχ
2
0 ,

where we have used the fact that δ (0)→ 1/dt as dt→ 0. Therefore, we can reduce dt2

to dt in the third line of Eq. (3.12). Defining γ = 2πλ 2
0 and κ = 2πχ2

0 , and retaining

the order of dt, we arrive at the Lindblad equation [Eq. (6.1)] from Eq. (3.12).

3.2.3 Quantum Langevin equation

Now, we derive the equations of motion for the system degrees of freedom from the

Heisenberg equation in the total Hilbert space. During the procedure, noise and the

influence of heat baths will be defined so that the quantum Langevin equation, which is

the starting point for the semiclassical theory of the long-range QCP, can be obtained.

For the system operators âl = σ̂ x
l , σ̂l

y, n̂l , which are Hermitian operators, the Heisen-
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berg equation is given by ∂t âl(t) = i[Ĥ, âl(t)]; then

∂t âl = i

[ĤS, âl
]
+
[
Ĥd(l), âl

]
+
∑

m, j=b,c

[
Ĥ j(m, l)+ Ĥ j(l,m), âl

] . (3.13)

The first term in Eq. (3.13) consists only of system operators:

i
[
ĤS, âl

]
= iω

∑
m

Pml
([

n̂mσ̂
+
l , âl

]
+
[
n̂lσ̂

+
m , âl

]
+h.c.

)
, (3.14)

and the other terms, which are obtained from commutation with the interaction terms,

are mixtures of the system and bath operators, as shown below. The commutation with

the decay Hamiltonian reads

i
[
Ĥd(l), âl

]
=
∑

q

λq

(
id̂†

l,q

[
σ̂
−
l , âl

]
− i
[
âl, σ̂

+
l

]
d̂l,q

)
, (3.15)

that with the branching Hamiltonian is

i
[
Ĥb(m, l), âl

]
=
∑

q

χq
√

Pml

(
ib̂†

ml,q

[
n̂mσ̂

+
l , âl

]
+h.c.

)
, (3.16)

and finally, that with the coagulation Hamiltonian is

i
[
Ĥc(m, l), âl

]
=
∑

q

χq
√

Pml

(
iĉ†

ml,q

[
n̂mσ̂

−
l , âl

]
+h.c.

)
. (3.17)

Note that i[Ĥb(c)(l,m), âl] can be obtained by replacing l and m with each other, except

for âl , in Eqs. (3.16) and (3.17). Here, the Heisenberg picture has been used for all

operators such that âl ≡ âl(t) = eiĤt âl(0)e−iĤt , where âl(0) denotes the Schrödinger

operator. Henceforth, an operator without an explicit time represents the Heisenberg

operator at time t.

To proceed a step further, we need functional forms of b̂ml,q, ĉml,q, and d̂l,q, whose

equations of motion are also obtained from the Heisenberg equations, ∂t d̂l,q = i[Ĥd(l), d̂l,q],
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∂t b̂ml,q = i[Ĥb(m, l), b̂ml,q], and ∂t ĉml,q = i[Ĥc(m, l), ĉml,q], respectively. It is easy to

show that the solutions are given by

d̂l,q = d̂l,q(0)e−iθqt − iλq

∫ t

0
dτ σ̂

−
l (τ)e−iθq(t−τ) , (3.18)

b̂ml,q = b̂ml,q(0)e−iφqt

− iχq
√

Pml

∫ t

0
dτ n̂m(τ)σ̂

+
l (τ)e−iφq(t−τ) , (3.19)

ĉml,q = ĉml,q(0)e−iφqt

− iχq
√

Pml

∫ t

0
dτ n̂m(τ)σ̂

−
l (τ)e−iφq(t−τ) . (3.20)

Plugging Eqs. (3.18)–(3.20) into Eqs. (3.15)–(3.17) reveals that the equation of motion

for âl can be divided into two parts, where one part is composed only of the system op-

erators, and the other contains both system and bath operators. For example, inserting

Eq. (3.18) into Eq. (3.15), we get

i
[
Ĥd(l), âl

]
=

∑
q

λq

(
id̂†

l,q(0)
[
σ̂
−
l , âl

]
eiθqt +h.c.

)
(3.21)

−
∑

q

λ
2
q

∫ t

0
dτ

(
σ̂
+
l (τ)

[
σ̂
−
l , âl

]
eiθq(t−τ)+h.c.

)
,

where the first line gives the quantum noise from the bath, and the second line is the

dissipative term. Employing the Weisskopf-Wigner theory as shown in the previous

section (3.2.2), we let λq be constant in Eq. (3.21), which leads to λ 2
0
∑

q eiθq(t−τ) ≈

2πλ 2
0 δ (t− τ). Therefore, Eq. (3.21) reads

√
γ

2π

∑
q

(
id̂†

l,q(0)e
iθqt [

σ̂
−
l , âl

]
− i
[
âl, σ̂

+
l

]
d̂l,q(0)e−iθqt

)
− γ

2
(
σ̂
+
l

[
σ̂
−
l , âl

]
+
[
âl, σ̂

+
l

]
σ̂
−
l

)
, (3.22)

because
∫ t

0 dτδ (t− τ) = 1/2, and γ = 2πλ 2
0 . For Eqs. (3.16) and (3.17), one can also

obtain similar expressions with κ = 2πχ2
0 .
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Because the second line in Eq. (3.22) can be rewritten as

(√
γσ̂
−
l

)† âl
√

γσ̂
−
l −

1
2

{(√
γσ̂
−
l

)†√
γσ̂
−
l , âl

}
≡ F̂(âl,

√
γσ̂
−
l ),

by combining Eqs. (3.14)–(3.17) with the Weisskopf–Wigner theory, we obtain the

equations of motion for âl , which are given by

∂t âl = iω
∑

m

Pml
([

n̂mσ̂
+
l , âl

]
+
[
n̂lσ̂

+
m , âl

]
+h.c.

)
+
∑
α,m

F̂
(
âl, Îα

lm
)
+ η̂(âl) , (3.23)

where for convenience we defined the interaction operators Îα
lm as

Î1
lm =

√
γ σ̂
−
l δl,m ,

Î2
lm =

√
κPml n̂mσ̂

+
l , Î3

lm =
√

κPml n̂lσ̂
+
m ,

Î4
lm =

√
κPml n̂mσ̂

−
l , Î5

lm =
√

κPml n̂lσ̂
−
m . (3.24)

The Kronecker delta function δlm = 1 for l = m and is zero otherwise. Although Îα
lm

has the same form as the Lindblad jump operators in Eqs. (3.3)–(3.5), it is composed

of the Heisenberg operators defined at time t, which are different from the Lindblad

operators. Finally, the noise operator η̂(âl, t) is also written in terms of Îα
lm and the

corresponding bath operators. We redefine the bath operators B̂α
lm,q(t) with the original

operators as

B̂1
lm,q(t) = d̂l,q(0)δl,me−iθqt ,

B̂2
lm,q(t) = b̂ml,q(0)e−iφqt , B̂3

lm,q(t) = b̂lm,q(0)e−iφqt ,

B̂4
lm,q(t) = ĉml,q(0)e−iφqt , B̂5

lm,q(t) = ĉlm,q(0)e−iφqt . (3.25)
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Then, one can write the noise operator in the compact form

η̂(âl) =
i√
2π

∑
α

∑
m,q

(
B̂α

lm,q(t)
)† [Îα

lm, âl
]
+h.c. (3.26)

Obviously, the quantum average of the noise operators becomes zero: 〈η̂(âl)〉B = 0.

3.3 Mean-field result

3.3.1 Mean-field equations

To explore the MF phase transition of the QCP, we extract the MF equation from the

quantum Langevin equation, Eq. (3.23), by taking the trace of the equations of the

operators with the initial density operator given by ρ̂(0)⊗ ρ̂B. By defining

al(t)≡ 〈âl(t)〉= tr âl(t)ρ̂(0)⊗ ρ̂B , (3.27)

the equations of the fields can be obtained; for example, the equation of motion for nl

is given by

ṅl = ω

∑
m

Pml〈n̂mσ̂
y
l 〉− γnl +κ

∑
m

Pml (nm−2〈n̂mn̂l〉) . (3.28)

One can also derive similar equations for σ x
l (t) and σ

y
l (t). Ignoring correlations such

as 〈n̂mσ̂
y
l 〉 → nm(t)σ

y
l (t) and taking uniform fields, nl(t)→ n(t), σ x

l (t)→ σ x(t), and

σ
y
l (t)→ σ y(t), we arrive at the MF equations, which are given by

ṅ = ωnσ
y +(κ−1)n−2κn2 ,

σ̇
x = −ωσ

x
σ

y− 1+κ

2
σ

x−κnσ
x ,

σ̇
y = ω

{
2n+(σ x)2−4n2

}
− 1+κ

2
σ

y−κnσ
y , (3.29)
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where we rescale time, tγ→ t, ω/γ→ω , and κ/γ→ κ . Note that the above equations

are equivalent to the MF equation used in previous studies for the nearest-neighbor

QCP model [25, 26].

3.3.2 Phase diagram

In this section, we review the previous MF result, which is also similar to those in

previous studies of TDP [29, 47, 54, 55]. It is found that the steady-state solutions or

fixed points, n0, σ x
0 , and σ

y
0 , satisfying ȧ = 0 in Eq. (3.29), form two groups as follows.

One is given by

σ
x
0 = 0 , σ

y
0 =

4ωn0(1−2n0)

1+κ +2κn0
, (3.30)

n0 = 0 ,
ω2−κ±

√
(ω2−κ)2 +(κ2 +2ω2)(κ2−1)

4ω2 +2κ2 ,

and the other is given by

σ
x
0 =±

√
4n2

0−2n0− (1+κ +2κn0)
2 /(2ω)2 , (3.31)

σ
y
0 =−1+κ +2κn0

2ω
, n0 = 0 ,

1
6
− 1

2κ
.

Note that if only real solutions are required, the latter should be ruled out because so-

lutions n0 do not give real values of σ x
0 in Eq. (3.31). Moreover, the nonzero solutions

n0 = n+0 ≡
ω2−κ+

√
(ω2−κ)2+(κ2+2ω2)(κ2−1)

4ω2+2κ2 and n0 = n−0 ≡
ω2−κ−

√
(ω2−κ)2+(κ2+2ω2)(κ2−1)

4ω2+2κ2

in Eq. (3.30) does not exist when (ω2−κ)2 < (κ2+2ω2)(1−κ2), which is inside the

(blue) dashed curve and lower (black) dotted curve in Fig. 3.2.

Now, we check the stability of Eq. (3.30) through linearization of Eq. (3.29) around

the fixed points. Inserting n = n0 + δn, σ y = σ
y
0 + δσ y, and σ x = σ x

0 + δσ x into

Eq. (3.29), and expanding up to the linear order of perturbations, we then obtain the
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Figure 3.2: Phase diagram of QCP. This diagram is represented as a plot of the classical
rate κ and the quantum rate ω . In the weak quantum regime, the second-order transi-
tion is observed [(red) solid vertical line and (red) filled circle; Eq. (E.9)]. In contrast,
in the strong quantum regime, the absorbing transition is found to be of the first-order
type [upper dashed (blue) curve between bistable and inactive states; Eq. (E.10)]. The
(red) filled circle, at which the two transitions intersect, is the tricritical point. (Black)
dotted vertical line represents the boundary of the number of the stable solutions and
(black) lower dotted curve inside the inactive region represents the boundary between
the existence and nonexistence of multiple solutions.
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linear equation δ̇a = Mδa, where

δa = (δn,δσ
y,δσ

x)T , (3.32)

and the matrix M is

M =


ωσ

y
0 −4κn0 +κ−1 ωn0 0

−8ωn0−κσ
y
0 +2ω −2κn0+κ+1

2 0

0 0 −2ωσ
y
0+2κn0+κ+1

2

 . (3.33)

For n0 = σ
y
0 = σ x

0 = 0, all the eigenvalues of M are negative at κ < 1, meaning that

the fixed point is stable, whereas one of the eigenvalues becomes positive when κ > 1.

Thus, κ = 1 is the boundary for the fixed point, n0 = σ
y
0 = σ x

0 = 0.

For the nonzero solutions n0 = n+(−)
0 in Eq. (3.30), by investigating the eigenvalues

of Eq. (3.33), one can note that n0 = n+0 and n0 = n−0 are stable when n+0 > 0 and

n−0 < 0, respectively. More precisely, n0 = n+0 ,σ
y
0 = σ

y
0(n

+
0 ),σ

x
0 = 0 is the stable fixed

point when n+0 > 0 and n+0 > 1
6−

1
2κ

. Because negative density, n < 0, is not physically

allowed, the fixed point n0 = n−0 < 0 should be ruled out in this analysis. To find the

stable region of n+0 , first we note that n+0 ≥ 0 becomes marginal along two curves. One

is the (red) solid vertical line including a (red) filled circle in Fig. 3.2,

κ = 1 ,ω ≤ 1 , (3.34)

where n+0 = n0 = 0, and the other is the dashed (blue) curve, given by

ω =

(
1+κ−κ

2 +
√

(1+κ−κ2)2−κ4

)1/2

at κ ≤ 1 , (3.35)

where n+0 = n−0 ≥ 0. n+0 is found to be stable outside of the region enclosed by the

two curves, Eqs. (E.9) and (E.10). Thus, the stability analysis yields the phase diagram

shown in Fig. 3.2. With the boundaries described by Eqs. (E.9) and (E.10), there are
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three regions: (i) the inactive phase, n0 = 0, (ii) the active phase, n0 = n+0 , divided

by Eq. (E.9) with a single stable fixed point, and (iii) a bistable phase possessing two

stable fixed points, n0 = 0 and n0 = n+0 , with the boundary curves of Eq. (E.10) and

κ = κc with ω > 1. The solutions of Eq. (3.30) show that between (i) and (ii) there exist

second-order phase transitions with the order parameter exponent β = 1 for ω < 1 and

β = 1/2 at ω = 1. Moreover, one can observe that the first-order transition may occur

between (i) and (iii), implying that (κ,ω) = (κc,1) where the boundaries meet at the

tricritical point.

By substituting the expression for σ
y
0 in Eq. (3.30) into the equation for n [Eq. (3.29)],

one may expand the equation with small n0 near the critical line Eq. (E.9) as

ṅ = 0 =−u2n0−u3n2
0−u4n3

0 +O(n4
0), (3.36)

where u2 = (κc−κ), and u3 and u4 are given by

u3 =
2κ(1+κ)−4ω2

1+κ
, u4 =

8ω2(1+2κ)

(1+κ)2 , (3.37)

respectively. Note that Eq. (3.36) implies an effective MF potential defined as

UMF =
∑
k=2

uk

k
nk , (3.38)

where uk is defined in Eq. (3.36). Then, the solution n0 satisfying Eq. (3.36) is also the

steady-state solution of the single effective equation of the order parameter, which is

given by

ṅ =−∂UMF/∂n. (3.39)

By expanding UMF up to the fourth order, it is found that when ω < 1, u3 and u4

are positive near κ = κc. Consequently, n0 = 0 becomes unstable, and the stable fixed

point is given by n0 ≈ (κ −κc)/u3 at κ > κc; consequently, the DP critical exponent

β = 1. On the other hand, at ω = 1, it is found that u3 = 0 at κ = κc yields a different
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universality, called the TDP class, where the fixed point is given by n0≈
√
(κ−κc)/u4

with β = 1/2. We conclude that the effective single equation Eq. (3.39) well describes

the critical behavior in the steady state, which is consistent with the linear stability

analysis based on the MF equations of all the system variables in Eq. (3.29).

We also observe that the effective equation Eq. (3.39) captures a change in the

nature of the transition at the tricritical point (κ,ω)= (κc,1). Expanding UMF up to the

fourth order again, as shown in Eq. (3.36), one can see that all the positive coefficients

uk yield the single fixed point n0 = 0, but given negative u3, an additional positive and

stable fixed point can exist as

n0 =
−u3 +

√
u2

3−4u2u4

2u4
, (3.40)

where u2
3 ≥ 4u2u4 is also satisfied. Because we consider only the limits κ → κc and

ω → 1, the discriminant u2
3 = 4u2u4 may give the curve near the tricritical point,

ω = 1+
√

3(κc−κ)/2 , (3.41)

which is also obtainable by expanding Eq. (E.10) at κ = κc. Of course, there is an-

other solution, ω = 1−
√

3(κc−κ)/2, but it does not satisfy u3 < 0. If ω > 1 +√
3(κc−κ)/2 at κ < κc, there are two stable fixed points, n0 = 0 and Eq. (3.40),

which is consistent with the previous discussion of the linear stability analysis. Be-

cause the fixed point of Eq. (3.40) disappears abruptly, and n0 = 0 becomes the only

fixed point crossing the curve of Eq. (3.41) from right to left, one may observe the first-

order phase transition in this regime. Although the analysis of the MF potential for the

first-order transition is valid near the tricritical point, the entire analysis of linear sta-

bility with Eq. (3.32) implies a first-order transition with the transition line described

by Eq. (E.10).
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3.4 Scaling behavior

3.4.1 Phenomenological equation

To investigate the low-dimensional QCP, one may add spatiotemporal fluctuations to

the MF equations, Eq. (3.29), as seen in previous works [25, 26], where the action for

n, σ x, and σ y is obtained by the so-called Martin–Siggia–Rose–Janssen–de Dominicis

(MSRJD) field theory [11, 69–71]. In this work, instead we start with the effective

MF equation of n, Eq. (3.39), which is a plausible assumption near the critical line

in Eq. (E.9) because σ x and σ y may arrive quickly in the steady state [Eq. (3.30)]

owing to the finite gap energy, as seen in Eq. (3.29). Near the critical line, by plugging

n0 ≈ σ
y
0 ≈ 0 and σ x

0 = 0 into Eq. (3.29), one can see that the excitation gap for σ x

and σ y is given by (1 + κc)/2. Then, the critical dynamics can be described by a

single equation associated with n and based on Eq. (3.39) with fluctuations. Using the

standard MSRJD theory and the scaling theory, we will show the critical exponents

and upper critical dimensions of the long-range QCP.

The phenomenological Langevin description has been regarded as a very useful

method to study the critical phenomena of DP-type models [28,29], where the strength

of the white noise is proportional to the density of active states because stochasticity is

induced by the active states. We also follow the phenomenological approach to obtain

the Langevin-type effective equation. Note that the field n in the MF equations is the

expectation value of the operator obtained by the trace over the density operator, as

seen in Eq. (3.27), implying that n can also be thought of as an averaged field over the

quantum noise manifested in the noise operator in Eq. (3.23). To describe the noise, one

may start from the equations of operators. Instead of using the quantum noise operators

[Eq. (3.26)] directly, we introduce a stochastic density field ξ satisfying ξ = n, where

the overbar denotes the average over a phenomenological noise η . We regard ξ as a

coarse-grained field of the active sites measured in a single realization, and take η as

the white Gaussian noise, which is plausible in thermodynamic limit. Near the critical
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point, ξ may be governed by the effective Langevin equation keeping the low energy

fluctuations, given by

∂tξl = κ

∑
m

Pmlξm−κξl−
∂UMF(ξl)

∂ξl
+ηl , (3.42)

where the first term is the lowest order contribution of Lévy flight, and the potential

UMF(ξ ) is defined as having the same form as in Eq. (3.38),

UMF(ξ ) =
∑
k=2

uk

k
ξ

k . (3.43)

Setting η = 0, taking the average of η in Eq. (3.42), and ignoring correlations such

that ξ k ≈ nk with k ≥ 2 and fluctuations, one can obtain the same MF equation as

Eq. (3.39) from the equation for ξ , Eq. (3.42).

The noise η should be invoked by the original quantum dynamics so that Eq. (3.42)

reflects the original dynamics of n̂. In the original dynamics, existing active states can

generate stochastic processes such as decay and branching via interactions with the

baths. Therefore, we require that the strength D defined in

ηl(t)ηm(t ′) = Dl δm,l δ (t− t ′) (3.44)

depends on the density ξl as Dl ∝ ξl , implying also that when ξ = 0, there is no

fluctuation, so the absorbing state is achieved. Moreover, one may suspect that the

original quantum noise itself also obeys the similar relation

〈η̂(n̂l(t)) η̂(n̂′m(t
′))〉B ≈ D̂l δm,l δ (t− t ′) , (3.45)

with D̂l ∝ 〈n̂l〉B, where D̂ is the strength of the quantum noise [68, 72]. Indeed, it has

been revealed that the quantum noise strength in the nearest-neighbor QCP is propor-

tional to 〈n̂〉B [25, 26]. If this is also true in our case, we can assume that the phe-
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nomenological noise η originates from the quantum noise operator η̂ with a strength

D = 〈D̂〉, at least up to the leading order.

Now, we check the strength of the quantum noise in the long-range QCP, which is

given by the correlators of the noise operators in Eq. (3.26):

〈η̂(âl(t)) η̂(â′k(t
′))〉B = trB

1
2π

∑
α,β

∑
m,q

∑
m′,q′

[
âl(t),

(
Îα
lm(t)

)†
]

(3.46)

×B̂α
lm,q(t)

(
B̂β

km′,q′(t
′)
)† [

Îβ

km′(t
′), â′k(t

′)
]

ρ̂B ,

where again ρ̂B = |0〉〈0|B. By using the commutation relations of B̂α , Eq. (3.46) can

be divided into three parts:

D̂1δl,k δ (t− t ′)+ D̂2δ (t− t ′)+ D̂3δt,t ′ , (3.47)

where the first term is given by

D̂1 = trB

∑
α

∑
m

[
âl,
(
Îα
lm
)†
][

Îα
lm, â

′
l
]

ρ̂B , (3.48)

the second term D̂2 reads

D̂2 = trB

{[
âl,
(
Î2
lk
)†
][

Î3
kl, â

′
k
]
+
[
âl,
(
Î3
lk
)†
][

Î2
kl, â

′
k
]

+
[
âl,
(
Î4
lk
)†
][

Î5
kl, â

′
k
]
+
[
âl,
(
Î5
lk
)†
][

Î4
kl, â

′
k
]}

ρ̂B , (3.49)

and finally,

D̂3 = trB
1
4

∑
α,β

∑
m,m′

[[
âl,
(
Îα
lm
)†
]
,
(

Îβ

km′

)†
][

Îα
lm,
[
Îβ

km′ , â
′
k

]]
ρ̂B , (3.50)

where we omitted the site indices in D̂1,2,3. To obtain D̂3, we used the fact that the

system operators and bath operators commute when they are at the same time, for

instance, n̂l(t)d̂l,q(t) = d̂l,q(t)n̂l(t). Further, using the solutions of the bath particles,
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Eqs. (3.18)–(3.20), with the Weisskopf–Wigner theory, one can obtain the above form

of D̂3.

In Eq. (3.47), the contribution of D̂3 can be ignored because δ (t − t ′)� δt,t ′ at

t = t ′. Moreover, D̂2 contains the contributions of only the pair (l,k), whereas l-to-

all coupling contributes to D̂1. Therefore, the strength of the noise, including D̂ in

Eq. (3.45), may be determined mainly by D̂1. Because D̂1 is not a Hermitian operator,

to obtain a real value, we take

Re〈D̂1〉 ≡ 〈D̂1 + D̂†
1 〉/2. (3.51)

Now, we can obtain the noise strength Re〈D̂l〉 for η̂(n̂l) from Eq. (3.51) by setting

âl = â′l = n̂l:

Re〈D̂l〉= nl +κ

∑
m

Pmlnm . (3.52)

Because we are interested in the critical dynamics, where long-wavelength excita-

tion is crucial, we use the approximation nm ≈ nl for all m in the summation term

in Eq. (3.52), which leads to

Re〈D̂l〉 ≈ (1+κ)nl . (3.53)

This is what we expected, and now we take Dl = (1+κ)ξl for the noise strength in

our Langevin equation [Eq. (3.42)].

We point out that the leading order of the noise strength for σ̂ x or σ̂ x is given by a

constant; more precisely,

Re〈η̂(σ̂ x
l (t)) η̂(σ̂ x

l (t
′))〉 ≈ Re〈η̂(σ̂ y

l (t)) η̂(σ̂ y
l (t
′))〉 ≈ (1+κ)δ (t− t ′) .
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Moreover, the noise operator η̂(n̂) is correlated with η̂(σ̂ x) and η̂(σ̂ y) as follows:

Re〈η̂(n̂l(t)) η̂(σ̂ x
l (t
′))〉 ≈ σ

x
l δ (t− t ′)/2 ,

Re〈η̂(n̂l(t)) η̂(σ̂ y
l (t
′))〉 ≈ σ

y
l δ (t− t ′)/2 .

Thus, even if there is no active state at some point, active states can be induced by

fluctuations of σ̂ x and σ̂ y, which implies that the absorbing state cannot be achieved.

This is reminiscent of the quantum fluctuation induced by the uncertainty relations

between the Pauli spin operators. Therefore, our semiclassical approach must be as-

sociated with a proper time scale, where the quantum fluctuation is negligible. At this

stage, we assume the time scale without proof.

In short, we introduced the stochastic field ξ as the density field of active states

and its phenomenological Langevin equation. To capture the critical dynamics of QCP,

we took the lowest-order fluctuation in the long-range interaction to the MF equation

of the order parameter n. Since the original dynamics shows the absorbing transition,

we assumed that the strength of the white Gaussian noise is proportional to the density

field. Indeed, we confirmed that the original quantum noise also has the multiplicative

nature, so we adopted the functional form of the quantum-noise strength in the lowest

order as one of our phenomenological noise η . Because the Langevin equation of ξ

is the classical field equation, one can apply the classical field theory to the QCP ef-

fectively at least near the critical point. Finally, we remark that the quantum Langevin

equation can be transformed to the c-number Langevin equation [72, 73]. One may

apply the conversion method in this work and expect to obtain a similar equation to

ours, Eq. (3.42). To check whether our assumptions are adequate and resolve the prob-

lem of time scale, it is worth studying the relationship between the phenomenological

and Langevin equations.
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Table 3.1: MF critical exponents. These critical exponents are obtained using the scal-
ing transformation of Eq. (3.58). The universality classes are determined by the power
of the long-range interaction (p) and the strength of the coherent dynamics (ω in Ĥs).
The long-range interaction is relevant (irrelevant) for p ≤ 2 (p > 2). Depending on
whether u3 = 0 or u3 > 0, dc and β can vary.

dc β ν⊥ ν‖ z

κ = κc ,ω = 1
p > 2 (TDP) 3 1/2 1/2 1 2

(u3 = 0) p≤ 2 (long-range TDP) 3p/2 1/2 1/p 1 p

κ = κc ,ω < 1
p > 2 (DP) 4 1 1/2 1 2

(u3 > 0) p≤ 2 (long-range DP) 2p 1 1/p 1 p

3.4.2 Critical exponents and upper critical dimensions

To apply the scaling theory, the equation for continuous fields is more convenient than

the discrete equation. Taking the continuum limit with an appropriate rescaling like

∂t → τ∂t , where τ is a scaling parameter, and expanding the Lévy term up to two

leading orders, as in previous works [49–52, 74], we write the Langevin equation of

the continuous density field ξ = ξ (r, t) up to the u4 term as

τ∂tξ = D∇
2
ξ +Dp∇

p
ξ −u2ξ −u3ξ

2−u4ξ
3 +η . (3.54)

Here D and Dp are the diffusion constants, obtained from the expansion, given by

κ
∫

dr′P(|r−r′|)ξ (r′)≈ κξ +D∇2ξ +Dp∇pξ , and the noise η(r, t) in the continuum

limit obeys

η(r1, t1)η(r0, t0) = Γξ (r0, t0)δ (r1− r0)δ (t1− t0) , (3.55)

where Γ = (1+κ). Note that uk in Eq. (3.54) was also rescaled appropriately.

Setting Γ = 0, which yields ξ = n, one can obtain the MF exponents for the cor-

relation length, ν⊥, and time, ν‖ = zν⊥. Under the scaling transformations, which are
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given by

|r| → |r′|= s|r| , t→ t ′ = szt , ξ → ξ
′ , (3.56)

where s > 1, the transformed equation is written as

τs−z
∂tξ
′ = Ds−2

∇
2
ξ
′+Dps−p

∇
p
ξ
′−u2ξ

′−u3ξ
′2−u4ξ

′3 . (3.57)

Because near the critical point the order parameter obeys the scaling form of ξ ′(r′) =

s−β/ν⊥ξ (r) [28, 29], we rewrite Eq. (3.57) in terms of ξ as

τ∂tξ = Dsz−2
∇

2
ξ +Dpsz−p

∇
p
ξ −u2sz

ξ −u3sz−β/ν⊥ξ
2−u4sz−2β/ν⊥ξ

3.

When p > 2 and u3 > 0, one may set z = 2 and β/ν⊥ = z = 2; then, at the critical point

where u2 = 0, the equation given by

τ∂tξ = D∇
2
ξ −u3ξ

2

is invariant under the scaling transformation because Dpsz−p∇pξ and u4sz−2β/ν⊥ξ 3

vanish by repeated transformations. Using the value β = 1, we obtain the exponents,

ν⊥ = 1/2, and thus ν‖ = 1. These exponents belong to the DP class.

For p > 2 and u3 = 0, however, the relevant equation is given by

τ∂tξ = D∇
2
ξ −u4ξ

3 ,

so β/ν⊥ = z/2 = 1. Using β = 1/2 at the tricritical point corresponding to u3 = 0, we

obtain the exponents ν⊥ = 1/2 and ν‖ = 1, which correspond to the TDP universality.

Therefore, if p > 2, the long-range term becomes irrelevant for both u3 > 0 and u3 = 0,

so the universality is equal to that in the short-range model. On the other hand, if p< 2,

one can see that the relevant term becomes Dpsz−p∇pξ instead of Dsz−2∇2ξ , leading

to the dynamic exponent z = p. Consequently, β/ν⊥ = z = p for u3 > 0, whereas
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β/ν⊥ = z/2 = p/2 for u3 = 0, yielding ν⊥ = 1/p for both cases. The MF exponents

for the short-range and long-range cases are summarized in Table 3.1.

To check the relevance of the noise, we employ the path integral formalism includ-

ing the noise term in Eq. (3.54). Using the MSRJD theory for the Langevin equation,

we obtain the action S = S[ξ , ξ̃ ] for Eq. (3.54), where ξ̃ is the response field, as fol-

lows:

S =

∫
dx ξ̃

[
τ∂t −D∇

2−Dp∇
p +u2 +u3ξ +u4ξ

2− Γ

2
ξ̃

]
ξ , (3.58)

where x = (r, t). Under the transformation given by Eq. (3.56), S[ξ , ξ̃ ]→ S′[ξ ′, ξ̃ ′],

where S′ can be written in terms of ξ and ξ̃ using the relations ξ ′ = s−bξ and ξ̃ ′ =

s−b̃ξ̃ , and is given by

S′ =

∫
dxsd+z

ξ̃

[
τs−z−b−b̃

∂t −Ds−2−b−b̃
∇

2−Dps−p−b−b̃
∇

p

+u2s−b−b̃ +u3s−2b−b̃
ξ +u4s−3b−b̃

ξ
2− Γ

2
s−b−2b̃

ξ̃

]
ξ . (3.59)

Therefore, we obtain the following relations of the parameters under the scaling trans-

formation:

τ → τ
′ = sd−b−b̃

τ ,

D → D′ = sd+z−2−b−b̃ D ,

Dp → D′p = sd+z−p−b−b̃ Dp ,

u2 → u′2 = sd+z−b−b̃ u2 ,

u3 → u′3 = sd+z−2b−b̃ u3 ,

u4 → u′4 = sd+z−3b−b̃ u4 ,

Γ → Γ
′ = sd+z−b−2b̃

Γ . (3.60)

Note that the transformations of the parameters in Eq. (3.60) correspond to the Wilson

renormalization group (RG) procedure [3, 28].
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One can choose b+ b̃= d so that τ is invariant under the transformation in Eq. (3.60).

Moreover, the relations for D and Dp suggest that the dynamic exponent z= 2 for p> 2

and z = p for p < 2. If z = 2 at p > 2, the long-range term with Dp becomes irrelevant,

whereas the short-range term with D is relevant, and vice versa for p < 2 with z = p.

Above the upper critical dimension, d > dc, the higher-order potential terms and noise

term are irrelevant, so the Gaussian fixed point is stable. Therefore, the relevance of u3,

u4, and Γ determines the upper critical dimension. The case of finite u3 is well-known,

as follows [49–52]. If u3 is finite, u4 is automatically irrelevant at dc, which implies

that at d . dc, u3 and Γ are relevant. Thus, one may infer that at d = dc, b = b̃ = z,

leading to b = dc/2 = z. Because z = 2 or z = p, the upper critical dimensions of the

short-range and long-range QCPs are given by dc = 4 and dc = 2p, respectively. Note

that by using b = β/ν⊥ with β = 1, one can obtain the MF exponents obtained in the

noiseless equation, Eq. (3.57).

Finally, we discuss the TDP universality with the long-range interaction. In this

case, u3 = 0; thus, u4 and Γ become relevant terms at d . dc. Similar to the case of DP,

at d = dc, the invariance of u4 and Γ in Eq. (3.60) yields b = z/2 and b̃ = z. Because

b+ b̃ = dc, the upper critical dimension of TDP is given by dc = 3z/2. Therefore, for

short-range TDP, it is found that dc = 3, as shown in previous works [47, 54, 55], and

for long-range TDP with p < 2, it is found that dc = 3p/2, which is similar to the long-

range DP case, but the constant differs from 2 for the DP class. Again, with b = β/ν⊥

and β = 1/2, we obtain the MF exponents for the TDP universality. Because it is well

known that the tricritical point does not exist in the one-dimensional DP-type model

in the absence of the long-range interaction [28], one may ask whether the tricritical

point is sustained when d = 1 is below the upper critical dimension or p > 2/3. To

answer that, numerical studies and RG approaches to long-range TDP are needed.
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3.5 Discussion and Conclusion

Now, we discuss how the long-range QCP can emerge from the cold atomic system.

We start with the Hamiltonian of Rydberg atoms under the antiblockade effect [23]:

ĤR = Ω

N∑
l

σ̂
x
l +∆

N∑
l

n̂l +
∑
l 6=m

Vlm

2
n̂l n̂m , (3.61)

where Ω is the Rabi oscillation frequency, ∆ denotes the detuning energy, and Vlm is the

long-range interaction between excited atoms. Because ∆ is very large, Rabi oscillation

is suppressed, but if we set Vlm =−∆ for the nearest-neighbor pairs, the excitation can

be enhanced by the interaction. This mechanism leads to coherent and incoherent CPs,

where the long-range nature of Vlm is usually neglected to realize the absorbing state on

long time scales [23, 25, 26]. However, these approaches are based on the low-density

limit; therefore, one spin can interact with approximately only one particle. As pointed

out in a previous work [23], when one spin simultaneously interacts with not only the

nearest-neighbor spins, but also long-distance spins, the long-range effect may change

the universality of the system.

We investigated the critical behavior of the quantum long-range CP, which is re-

alized by coherently and incoherently driven interacting cold atomic systems. We de-

rived the Heisenberg equations from the total Hamiltonian consisting of the system,

the baths, and their interaction. Using the semiclassical approach, we obtained the

MF equation for the long-range QCP, where branching and coagulation are realized

as Lévy flight. Then we obtained a phase diagram similar to that for the short-range

QCP. Next, we set up the phenomenological Langevin equation and built the Martin–

Siggia–Rose–Janssen–de Dominicis action. Using scaling theory, we determined the

critical exponents in the MF limit. Depending on the model parameters, the DP-type

and TDP-type transitions occur. For the DP-type case, the critical exponents were ob-

tained as those of the long-range DP [49, 52]. For the TDP-type case at the tricritical
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point, new critical exponents were obtained, the universality class of which we identify

as the long-range TDP class. Moreover, we determined the upper critical dimension

for the long-range TDP, dc = 3p/2, which is different from that of the long-range DP

class, dc = 2p. The critical exponents for the ordinary DP and TDP and the long-range

DP and TDP classes are compared in Table 3.1. Recently a similar result that a first

and second-order phase transition coexist has been reported in the quantum epidemic

model, realizable in a dissipative atomic system with long-range interaction [75]. We

expect that our semi-classical approach is also applicable to the epidemic model us-

ing a three-state quantum spin system. Also, we remark that we considered here the

homogeneous mean-field behavior, and it would be interesting how the heterogeneous

structure affects on the universal behavior [76].

In this study, we focused on the long-range nonequilibrium absorbing phase tran-

sition in the dissipative quantum spin system. We obtained the phase diagram and

determined the transition properties within the analytic theoretical framework in the

MF limit. However, the transition behavior below the upper critical dimension has not

been determined yet. The renormalization group approach to this problem seems to be

challenging, yet numerical simulation studies remain as the next problem.
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Chapter 4

Numerical simulation of long-range TDP in low di-

mensions

Major contents of this chapter is published in Ref. [32].

4.1 Introduction

In statistical physics, nonequilibrium phase transitions into an absorbing state are a

well-known phenomenon and have been widely studied [20,28,29,38–45]. One of the

most popular models is a contact process (CP). In the CP model, the system contains

either an active or an inactive particle at each site of a d-dimensional lattice. An active

particle activates an inactive particle at the nearest-neighbor site with probability κ;

otherwise, it becomes inactive itself with probability 1− κ . By contrast, an inactive

particle cannot recover to an active particle alone. When κ is small, inactive particles

become more abundant with time, and eventually the system is fully occupied by in-

active particles. Then, the system is no longer dynamic and falls into an absorbing

state. When κ is large, the system remains in an active state with a finite density of

active particles. Thus, the CP model exhibits a phase transition from an active to an

absorbing state as the control parameter κ is decreased in any spatial dimension. This

absorbing transition is second-order and belongs to the so-called directed percolation

(DP) universality class [28, 29, 42–44, 47, 48]. In the DP class, the mean-field solution

is valid above the upper critical dimension dc = 4. The CP model can be applied to

diverse phenomena such as the epidemic spread of infectious disease and the reaction-

59



diffusion process of interacting particles.

The CP model has been modified in various ways to describe different phenomena.

For instance, Lübeck introduced the so-called tricritical CP (TCP) model as follows. In

addition to the ordinary CP, a pair of consecutive active particles can activate an inac-

tive particle at a nearest-neighbor site with probability ω [53–57,77]. The TCP model

exhibits an absorbing transition, which is either first-order or second-order depending

on the parameters (κ , ω). The two types of phase boundaries meet at a tricritical point.

The absorbing transition at the tricritical point is second-order, and its critical behav-

ior, which is denoted as tricritical DP (TDP), is distinct from that of the DP class. The

TDP class has been extensively studied, and various features have been identified. Us-

ing the field theoretical approach [53], the critical exponents of the TDP class were

determined, together with the upper critical dimension, dc = 3 [53, 77, 78]. Moreover,

extensive numerical simulations were performed in two dimensions in Refs. [54,55,57]

using slightly different models. However, the simulations yielded critical exponents

that were inconsistent with each other, which was attributed to the inaccuracy of the

numerical value of the tricritical point [45]. It was also argued that the first-order tran-

sition does not occur in the one-dimensional DP-type model [79]. Thus, the lower

critical dimension seems to be two.

Recently, the TDP class has attracted considerable attention from the physics com-

munity after the quantum contact process (QCP), which belongs to the TDP univer-

sality class in the mean-field semi-classical limit, was investigated and realized exper-

imentally in a dissipative quantum system of Rydberg atoms in the presence of the

strong dephasing [24]. An active (inactive) particle is represented by a Rydberg atom

in an excited state (the ground state). An inactive particle is activated by detuning the

excitation energy of an active particle, in a process called antiblockade [58, 59]. This

antiblockade dynamics can be implemented incoherently when strong dephasing noise

is applied. In this case, the quantum coherence becomes negligible, and the dynamics

is reduced to the classical CP process, which generates a second-order transition. How-
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ever, when quantum coherence is essential, this case is called the QCP, and it yields

second-order and first-order transitions [25,26]. Competition between the two types of

processes leads to a tricritical point, which yields another second-order transition that

belongs to the TDP class.

We remark that if an atom is excited to the s-state by the QCP, then quantum

coherence would occur locally, so the short-range TCP (STCP) model [Fig. 4.1(a)]

would be relevant, which is equivalent to ordinary TCP. On the other hand, if excitation

to the d-state occurs, dipole–dipole interactions become effective, and a long-range

TCP (LTCP) model [Fig. 4.1(b), (c), and (d)] would be relevant. Although the STCP

model has been extensively investigated not only in the mean-field limit but also for

low-dimensional cases, the LTCP model has only a mean-field solution [31].

In phase transitions, the interaction range is an essential factor determining the

universality class of phase transitions in both equilibrium [80–85] and nonequilibrium

systems [49–52, 86]. Thus, the classical CP model with long-range interactions was

introduced, motivated by the fact that epidemic diseases can be spread by, for instance,

Lévy flight. In this model, the activation process is realized by assigning the probability

κPI(r) that each active particle activates an inactive particle at distance r. Thus, PI(r)

represents the probability that a particle at distance r is chosen. PI(r), which follows

the power-law ∼ 1/rd+σ , is non-trivial, where σ > 0 is a control parameter.

This long-range CP (LCP) exhibits σ -dependent critical behavior, which is rele-

vant within the interval denoted as [σc1, σc2]. Below σc1, the critical behavior is consis-

tent with the mean-field solution. Using the field-theoretical approach, dc is determined

as min(4, 2σ) [49, 50]. Thus, for σ < 2 or d < 4, dc = 2σ , and σc1 = d/2 for d < 4.

Above σc2, it belongs to the ordinary DP class. Field-theoretical analysis revealed that

σc2 = d + z(1−2δ ), where z is a dynamic exponent, and δ is the critical exponent for

the density of active particles ρa(t)∼ t−δ of the ordinary DP class. When z and δ were

replaced with their DP values, σc2 was found to be 2.0766 in one dimension, 2.1725

in two dimensions, and 2.126 in three dimensions. However, direct simulation data in
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one dimension could not reproduce the value σc2 ≈ 2.08, so further investigation is

needed in future work to resolve this inconsistency [49]. For d > 4, there exists one

threshold, σc = 2, such that for σ < 2, the mean-field solution of the long-range DP is

valid, whereas for σ > 2, the mean-field solution of the ordinary DP is valid.

We focus on the LTCP model. In our previous work, we constructed a phase dia-

gram based on the mean-field solution, which is valid for d > dc = min(3,1.5σ) [31].

In this case, there exists a characteristic value σc= 2 such that for σ < σc, the mean-

field solution of the LTCP is relevant, and for σ > σc, the LTCP model behaves like the

STCP model. We will show later that when d < 3, the LTCP model exhibits distinc-

tive behavior (characterized as that of the LTCP class) in the interval [σc1, σc2], where

σc1 = 2d/3 because dc =1.5σ , and σc2 is determined by the hyperscaling relation

σc2 = d + z(1− δ − δ ′), where δ ′ is the critical exponent for the survival probability

P(t) ∼ t−δ ′ . We need to replace z, δ , and δ ′ in the formula with the numerical values

of the short-range TDP (STDP) to obtain σc2. For σ < σc1 shown in Fig. 4.1(d), the

mean-field behavior of the LTDP class appears, and for σ > σc2 shown in Fig. 4.1(a),

the behavior of the STDP class appears. The universality class diagram will be shown

later. As in the LCP model, the value of σc2 is obtained from the hyperscaling relation;

however, it is not consistent with the value obtained directly from numerical simula-

tions. Finally, we determine the critical exponents of the LTCP model in the interval

[σc1, σc2], which vary continuously with σ .

The remainder of this paper is organized as follows. In Sec. 4.2, we present the

rules of the long-range TCP in detail. In Sec. 4.3, the critical behavior of the absorbing

transition is determined. In Sec. 4.4, we set up the Langevin equation to derive the

scaling relation. In Sec. 4.5, we report numerical results for the long-range TCP. In the

final section, a summary and discussion are presented.
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Figure 4.1: Snapshot of active sites of the LTCP model in one dimension at a critical
point (κc(ω), ω) at a fixed ω = 0.5 < ωc (a) and (b) and at the tricritical point (κt , ωt)
(c) and (d). For σ > 1, the tricritical point does not exist.
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Table 4.1: Reaction schemes of the CP, TCP, and LTCP. A (0) represents the active
(inactive) state. TCP∗ denotes the TCP model. When the Lévy exponent σ → ∞ in the
LTCP, the LTCP model is reduced to the m-TCP used in Sec. 4.5.1. The last column
indicates the processes explained in Sec. 4.2. The notation · · · in the LTCP column
represents long-range interactions. PI(|rrr− rrr′|)∼ 1/|rrr− rrr′|d+σ .

CP TCP∗ LTCP

Reaction Probability Reaction Probability Reaction Probability Process

A→ 0 1−κ A→ 0 (1−ω)(1−κ) A→ 0 (1−ω)(1−κ) i-a)

A0→ AA κ A0→ AA (1−ω)κ A· · ·0→ A · · ·A (1−ω)κ PI(|rrr− rrr′|) i-b)

A0→ 00 ω(1−κ) A0→ 00 ω(1−κ) ii-a)

A0→ AA ωκ AA· · ·0→ AA · · ·A ωκ PI(|rrr− rrr′|) ii-b)

AA0→ AAA ω

4.2 LTCP model

We perform numerical simulations by extending the algorithm used in Ref. [55] for

the STCP model to the long-range case. Specifically, the model is set up on a d-

dimensional lattice composed of Ld sites, where L is the lateral size of the system,

and each site is in either the active state (denoted as A) or the inactive state (denoted

as 0). We use two different initial configurations: i) one site is active, and the others

are all inactive, and ii) all sites are active. Each case will be used for different pur-

poses. We use the periodic boundary condition in the simulations. At each time step,

the following rules are applied.

i) An active site is chosen randomly from the list of active sites. Its position is

denoted as rrr0. With probability 1−ω , a long-range CP is performed as follows:

i-a) With probability 1−κ , the active site chosen in step i) is inactivated.

i-b) With probability κ , a site at a distance r from the position rrr0 is selected

with probability PI(x). If this target site is inactive (0), its state is changed

to active (A).
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ii) An active site is chosen randomly from the list of active sites. Its position is

denoted as rrr0. The state of a nearest-neighbor site is checked with probability

ω .

ii-a) If the neighbor is inactive, then the active site at rrr0 is inactivated with

probability 1−κ .

ii-b) If the neighbor is active, then a third site is selected at a distance r from rrr0

with probability PI(r). If this target is inactive, it is activated with proba-

bility κ .

iii) If the number of active sites is zero, the simulation ends. Otherwise, the time t is

advanced by 1/Na, where Na(t) is the total number of active sites in the system

at time t, and the simulation returns to step i).

In this rule, PI(r) is given as ∼ 1/rd+σ . This model is controlled by three parameters:

i) the Lévy exponent σ > 0 controlling the long-range interaction, ii) the probability

ω of checking the nearest-neighbor site before the reaction, and iii) the probability of

the branching process κ . The reactions are summarized in Table 4.1.

4.3 Critical behavior of the absorbing transition

Here we introduce the basic physical quantities used to characterize the critical be-

havior of the absorbing transition. To proceed, we first consider a system in which

a single active site is located at rrr = 0 at time t = 0, and the remaining sites are in-

active. The LTCP begins in this configuration. We measure the following quantities

to characterize the criticality of the LTCP: i) the survival probability P(t) (i.e., the

probability that the system has not entered in the absorbing state), ii) the number

of active sites Na(t), and iii) the mean square of the distance from the origin R2(t).

That is, R2(t) = (1/Na(t))
∑Na

j=1 rrr2
j , where rrr j is the position of the j-th active site.

When sufficiently long-range interactions are considered, the arithmetic average of
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R2(t) ≡ 〈|r(t)|2〉 may be difficult to obtain numerically [49, 50]. The geometric aver-

age R2(t) = exp[〈ln |r(t)|2〉] may be a suitable alternative. Second, one may take as the

initial configuration that occupied entirely by active sites. Using this initial configura-

tion, iv) the density ρa(t) of active sites at time t is measured.

At the critical point, these quantities exhibit power-law behavior as follows:

P(t) ∝ t−δ ′ , Na(t) ∝ tη , R2(t) ∝ t2/z , ρa(t)∼ t−δ . (4.1)

The mean density of surviving active sites behaves as ρa(t)P(t) = Na(t)/Rd(t). Thus,

the exponent δ is related to the other exponents as δ = d/z−η − δ ′. In particular,

at the tricritical point, these exponents are denoted as δ ′t , ηt , zt , and δt . Hereafter, we

drop the subscript t indicating the tricritical case for brevity unless it is necessary for

clarity.

In the supercritical region, κ > κc for each given ω < ωt , and P(t) reaches Ps

in the steady state, where Ps ∼ (κ −κc)
β ′ . ρa(t) behaves similarly to ρa(t)→ ρa,s ∼

(κ−κc)
β . The exponents β ′ and β are related to δ ′ = β ′/ν‖ and δ = β/ν‖, where the

exponent ν‖ is the mean survival time exponent defined in terms of the mean survival

time τ ∼ (κ −κc)
−ν‖ . At the tricritical point, β 6= β ′ (equivalently, δ 6= δ ′), whereas

in the DP class, they are the same.

We characterize the critical behavior in finite systems using the finite-size scaling

(FSS) theory. In this approach, the critical exponents are determined using the data

collapse technique for scaling functions. Data collapse technique is achieved by scaling

hypothesis in which the large-scale properties are invariant near the tricritical point

(κt = κc(ωt), ωt) under the following scale transformations.

∆κ → s−1
∆κ , ρa→ s−β

ρa , Na→ sν‖ηNa , P→ s−β ′P ,

ζ → sν⊥ζ , τ → sν‖τ , ∆ω → s−φ
∆ω , (4.2)

where ∆κ = κ−κt , ∆ω =ω−ωt , and s is a scale factor and ν⊥ is the spatial correlation

66



exponent defined in terms of the spatial correlation ζ ∼ (κ − κc)
−ν⊥ . In addition, φ

is a crossover exponent defined as the ratio of the scaling exponent of ∆κ and ∆ω .

For instance, at the tricritical point (κt , ωt), the average density ρa(t) of active sites

behaves as ρa(t,N) = sβ ρa(sν‖t,sν̄⊥N) , where ν̄⊥ ≡ dν⊥.

When sν‖t = 1 is chosen, ρa(t) = t−δ fn(tN−z̄). Similarly, the other quantities are

reduced as

P(t) = t−δ ′ fp(tN−z̄) , Na(t) = tη fN(tN−z̄) , (4.3)

where z̄ = z/d, z = ν‖/ν⊥, and fn, fp, and fN are scaling functions.

Near the tricritical point, the number of active sites and the density of active sites

scales as

Na(t,∆κ,∆ω) = s−ν‖ηNa(sν‖t,s−1
∆κ,s−φ

∆ω) , (4.4)

ρa(t,∆κ,∆ω) = sβ
ρa(sν‖t,s−1

∆κ,s−φ
∆ω) . (4.5)

At ∆ω = 0, by choosing sν‖t = 1, we can reduce Eq. (4.4) to

Na(t) = tη f1(t1/ν‖∆κ) , (4.6)

where f1 is a scaling function. Alternatively, in the steady state t → ∞, by choosing

s−φ ∆ω = 1, we can reduce Eq. (4.5) to

ρa(t) = ∆ω
β/φ f2((∆ω)−1/φ

∆κ) , (4.7)

where f2 is a scaling function. In a steady-state simulation, the absorbing state can be

reached because of finite-size effects [87, 88]. To overcome this problem, when the

system reaches the absorbing state, we perform a spontaneous creation, 0→ A.

In this section, we briefly reviewed the power-law behavior and FSS theory of the

absorbing state phase transition. These context will be used in Sec. 4.5 to perform the
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Figure 4.2: Phase diagram of the TCP model in the mean-field limit. A tricritical point
(red dot) is located at (0.6180,0.3820). White solid (dashed) curve represents a con-
tinuous (discontinuous) transition.

numerical analysis of the critical exponents.

4.4 Analytic results

4.4.1 Phase diagram in the mean-field limit

In this section, we recall the analytic result based on the mean-field approach obtained

in a previous work [31]. The density of active sites at time t averaged over the surviving

sample is denoted as ρa(t). In the mean-field limit, we ignore the effect of local density

fluctuations and write the dynamic equation of the LTCP model as

∂tρa(t) =−u2ρa−u3ρ
2
a −u4ρ

3
a , (4.8)

where u2 = ωκ + 1− 2κ , u3 = κ −ω −ωκ , and u4 = ωκ . These coefficients are

derived on the basis of the reactions listed in Table I.
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In the steady state, we set ∂tρa = 0 and obtain the solutions as

ρ
∗
a ≡ 0 and ρ

∗
a,± ≡

−u3±
√

u2
3−4u2u4

2u4
. (4.9)

Linear stability analysis reveals that the first solution, ρ∗a = 0, is stable for u2 > 0 and

unstable for u2 < 0. Thus, u2 = ωκ +1−2κ = 0 is the boundary of the stable solution

at the fixed point ρ∗a = 0, which is equivalent to the boundary of the active phase in

Fig. 4.2.

For the second solution, ρ∗a,±, we analyze the linear stability as

δ ρ̇a,± =−(u2 +2u3ρ
∗
a,±+3u4ρ

∗2
a,±)δρa,± (4.10)

= ρ
∗
a,±(−u3−2u4ρ

∗
a,±)δρa,± =∓ρ

∗
a,±

√
u2

3−4u2u4δρa,± . (4.11)

Thus, ρ∗a,+ and ρ∗a,− are stable for ρ∗a,+ > 0 and ρ∗a,− < 0, respectively. Because ρa > 0,

ρ∗a,− is ignored. For ρa = ρ∗a,+, we obtain two phase boundaries. The first is u2 = 0

and u3 ≥ 0. Thus, u2
3−4u2u4 ≥ 0. These conditions are rewritten in terms of (κ,ω) as

follows:

ωκ +1−2κ = 0 , and ω ≤ ωt ≡
3−
√

5
2

. (4.12)

Thus, ρ∗a,+ = 0. The first equation and second inequality above were used to generate

the white solid curve in Fig. 4.2, and the red dot indicates ω = ωt .

The second phase boundary is obtained from the conditions u2
3− 4u2u4 = 0 and

u3 ≤ 0. These conditions lead to

(κ−ω−ωκ)2−4ωκ(1−2κ +ωκ) = 0 for ω ≥ ωt and κ ≥ 0.5, (4.13)

where ρ∗a,+ ≥ 0. This phase boundary is drawn as a white dashed curve in Fig. 4.2.

There exist three phases in the phase diagram (Fig. 4.2): i) the inactive (absorbing)
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phase with ρa = 0, ii) the active phase with ρa = ρ∗a,+ > 0, and iii) the bistable phase

with two stable fixed points, ρa = 0 and ρa = ρ∗a,+ > 0. The phase boundaries are de-

termined by the conditions derived above. We will show later that the phase transition

across the first boundary above (indicated by the white solid curve) is second-order,

whereas that across the second boundary (indicated by the dashed curve) is first-order.

Therefore, a tricritical point is formed at (κt ,ωt). The critical exponent of the order

parameter defined as ρa ∼ (κ−κc)
β across the white solid curve is found to be β = 1

for ω < ωt , and the exponent βt for ρa ∼ (κ−κt)
βt is found to be βt = 1/2 at ω = ωt .

To confirm our analytic result, we numerically verified the phase diagram on the

fully connected lattice. Specifically, using the FSS theory, we obtained the tricritical

point and critical exponents presented in the next subsection corresponding to the an-

alytic results.

4.4.2 Hyperscaling relation for LTDP

In this section, we recall the field-theoretic analysis performed in the previous work [31]

to obtain the exact scaling relation and mean-field exponents. To account for the spa-

tial fluctuations and noise induced by active particles occupying active sites, we set up

the Langevin equation as follows:

∂tρa = Dσ ∇
σ

ρa +D∇
2
ρa−u2ρa−u3ρ

2
a −u4ρ

3
a +ξ , (4.14)

where Dσ and D are the diffusion constants obtained from a small momentum expan-

sion, which are given by (1−ω)κ
∫

drrr′P(|rrr− rrr′|)ρa(rrr′) ≈ (1−ω)κρa +Dσ ∇σ ρa +

D∇2ρa. The noise ξ (rrr, t) is a multiplicative Gaussian random variable with zero mean

and a correlation of

〈ξ (rrr, t)ξ (rrr, t)〉= Γρa(rrr, t)δ d(rrr− rrr′)δ (t− t ′) . (4.15)
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Using the Martin–Siggia–Rose–Janssen–de Dominicis formalism [69–71, 89, 90] for

the Langevin equation, we obtain the action as follows:

S =

∫
dxxxρ

′
a

[
∂t −D∇

2−Dσ ∇
σ +u2 +u3ρa +u4ρ

2
a −

Γ

2
ρa

]
ρa , (4.16)

where ρ ′a is an auxiliary field, and xxx = (rrr, t).

If u3 is finite, u4 is irrelevant at dc, which implies that the action described by

Eq. (4.16) belongs to the long-range DP (LDP) class. It is satisfied by the so-called

rapidity-reversal (or duality) symmetry, which is invariant under the exchange ρa(rrr, t)↔

−ρ ′a(rrr,−t). Rapidity-reversal symmetry implies that the critical exponents β and β ′

must be identical. It was revealed that in the LDP class, Dσ is not renormalized [49,50].

This means that Dσ is invariant under the scaling transformation; thus, one obtains the

exact scaling relation d + z−σ −2zδ = 0 [49–52, 86].

At the tricritical point, u3 = 0, the rapidity-reversal symmetry is broken, and β 6=

β ′. Crossover behavior occurs when more than one fixed point appears in the phase

diagram. Scaling theory is used to obtain the mean-field critical exponents:

β = 0.5 , β
′ = 1 , ν⊥ = 1/σ , ν‖ = 1 , z = p , φ = 0.5 , (4.17)

which are expected to be valid above the upper critical dimension dc = 1.5σ . For the

LDP class, loop corrections can be represented as an integer power series in momen-

tum space [50]. This can be applied to LTDP as well, which means that the coefficient

of the fractional Laplacian is not renormalized (see Appendix C.2). This implies that

the coefficient of the fractional Laplacian must be invariant under the renormalization

group (RG) transformation. Hence, one can obtain the so-called hyperscaling relation

d + z−σ − z(δ +δ
′) = 0 , (4.18)

which is valid below the upper critical dimension, d ≤ dc.
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Below dc, the universal features of the LTCP model depend on σ , which is within

the interval [σc1,σc2]. Thus, we consider the following three domains. First, below

σc1, the interaction range can be superdiffusive; thus, mean-field critical behavior ap-

pears. In other words, above the upper critical dimension d > dc = 1.5σ , mean-field

behavior is expected. Thus, σc1 = 2d/3. Second, σc2 is determined to be 1.36067 using

Eq. (4.18). Finally, in the regime σ > σc2, the exponents are reduced to those of the

STDP class.

4.5 Numerical Results

4.5.1 STCP model in two dimensions

Figure 4.3: Phase diagram of the m-TCP model in two dimensions. A tricritical point is
located at (0.6606466,0.879). White (Orange) curve represents a continuous (discon-
tinuous) transition. At ω = 0, the model is reduced to the CP model at κc = 0.622466.
The data points (white circles and orange triangles) represent numerical results.

We consider an STCP model called the m-TCP model to distinguish it from other

previous models designed as models of the STCP class. This model is a simple version

of the LTCP model obtained by replacing the long-range interaction with short-range
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Figure 4.4: (a) Scaling plot of Nat−η versus t1/ν‖(κc− κ) for different values of κ .
Data points collapse well onto a single curve for η = 0.230 and ν‖ = 1.295. (b) Plot of
Na(t) versus t at and around κc. Inset: Local slopes of Na(t) versus 1/t for these data
points obtained in (a). ω = 0.6, and κc = 0.67326.

interaction, which we will consider next. In fact, the STCP model was explored in

Refs. [54,55,57] using slightly different rules, but the numerical values of their critical

exponents differed from each other. The origin of this difference will be discussed later.

Here, we check the justification for our LTCP model using the simplified version, the

m-TCP model, by comparing our simulation results with those obtained in Refs. [54,

55,57]. This m-TCP model contains two control parameters, κ and ω . In (κ,ω) space,

there exist second-order and first-order phase transition curves and a tricritical point at
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Figure 4.5: Plot of Na(t) for different values of ω: ω = 0 at the DP point; ω = 0.879
at the TDP point; ω = 0.82 in the crossover region between these two points; and
ω = 0.9 in the first-order transition domain. Dashed lines are guidelines with slope
0.230,0.102, and −0.353, from the top. The system size is taken as N = 108.

Table 4.2: 2d TDP universality at tricritical point (κt ,ωt) for various models. Here,
we determine the tricritical point of Lübeck’s TCP model by finding the power-law
behavior of the number of active sites Na(t).

Model (κt ,ωt) ν‖ z δ δ ′ η

Generalized DK [54] (0.1813672,2.795) 1.156(4) 2.110(6) 0.087(3) 1.218(7) −0.353(9)

Ordinary TCP [55] (0.286237,0.919) 1.15±0.005 2.11±0.01 0.09±0.01 1.22±0.008 −0.35±0.008

Modified TCP (0.6606466,0.879) 1.15±0.005 2.11±0.01 0.09±0.01 1.22±0.008 −0.35±0.008

which the two transition curves meet.

To determine the second-order curve, we find a critical point κc for each value of

ω in the region ω < ωt as follows. First, we use the FSS method based on Eq. (4.6).

We take the scale factor s as s = κc−κ and plot Na(t)t−η versus (κc−κ)t1/ν‖ . If we

choose κc correctly, then the data points for different κ values would collapse onto a

single curve. Indeed, we obtain this result, for instance, for ω = 0.6 with κc = 0.67326

[Fig. 4.4(a)]. In the second method, we check the local slope of the curve of Na(t) as a
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Figure 4.6: Plots of four physical quantities used to characterize the absorbing tran-
sition of the m-TCP model in two dimensions at a tricritical point: (a) Na(t) ver-
sus t, (b) P(t) versus t, (c) R2(t) versus t, and (d) ρa(t) versus t. The exponent
values are estimated as follows: (a) η = −0.35± 0.008, (b) δ ′ = 1.22± 0.008, (c)
2/z = 0.947± 0.004, and (d) δ = 0.09± 0.01. Insets: Local slopes of each quantity
versus 1/t to confirm the estimated slopes.

function of t. If we choose κc correctly, then Na(t) would exhibit power-law behavior

as a function of t with the exponent η(ω) [Fig. 4.4(b)]. Using these two methods, we

determine the critical points κc for each value of ω .

We obtain the phase diagram shown in Fig. 4.3. When ω = 0, the absorbing transi-

tion belongs to the DP class, and thus η ≈ 0.230. We trace the value of the exponent η

as a function of ω in Fig. 4.5. The ω values are chosen as follows: (i) ω = 0 (DP class);

(ii) ω = 0.82 (in the crossover region from DP to TDP); (iii) ω = 0.879 (TDP class);

and (iv) ω = 0.9 (in the region of the first-order transition). In Fig. 4.5, there are two

generic power-law lines at ω = 0 and ω = 0.879. At the tricritical point, we obtain

the tricritical exponents as η = −0.35± 0.008, δ ′ = 1.22± 0.008, z = 2.11± 0.01,

and δ = 0.09± 0.01 in Fig. 4.6. When we perform the data collapse, the error bars

are measured by controlling the exponents until the data collapse breaks down. The
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Figure 4.7: FSS analysis of the m-TCP model. (a) Scaling plot of Nat−η versus
t1/ν‖(κt −κ) for different values of κ . Data points collapse well onto a single curve
for κt = 0.6606466, η =−0.353, and ν‖ = 1.16. (b) Scaling plot of ρa,s(ωt−ω)−β/φ

versus (κ−κc)(ωt −ω)−1/φ for different values of ω , where ρa,s represents ρa in the
steady state. Dotted (Dashed) line is a guideline with slope βDP = 0.584 (βt = 0.101).
Data points collapse well onto a single curve for φ = 0.52.

exponent ν‖ is obtained from the rescaling plot of Na(t)t−η versus t1/ν‖(κt − κ) for

different κ values in Fig. 4.7(a). In Fig. 4.7(b), the crossover exponent φ is obtained

from the rescaling plot of ρa,s(ωt−ω)−β/φ versus (κ−κc)(ωt−ω)−1/φ . In this case,

φ = 0.52±0.02 is obtained, in agreement with the result in Ref. [55]. We remark that

the authors of Refs. [54,55,57] considered TCP models with slightly different reaction

76



Figure 4.8: Plot of ρa,s versus κ for the m-TCP model at a fixed ω = 0.95 > ωt . A
hysteresis curve is obtained. The system size is N = 106.

rules. Further, they obtained slightly different critical exponent values. It was argued

that this discrepancy results from the different methodologies used to determine the

tricritical point in Ref. [55]. The author of Ref. [55] used FSS of the order parameter

in the steady state. It is difficult to find a tricritical point correctly using this method,

because FSS in the steady state is not sensitive to κt . On the basis of our two criteria,

we obtain ωt = 0.9190 instead of the value of 0.9055 in Ref. [55]. At our tricritical

point, we obtain critical exponent values similar to those in Ref. [54]. In Table 4.2, we

list the three sets of critical exponent values of the STCP model obtained using three

different rules.

For ω > ωt , as represented by the orange curve in Fig. 4.3, a first-order transition

occurs. One of the features of the first-order transition is the presence of a hysteresis

curve. Thus, we check whether a hysteresis curve is indeed generated. After taking an

ω value larger than ωt , say ω = 0.95, we calculate the LTDP dynamics for a given

κ and obtain ρa(κ) in the steady state. Next, we increase κ slightly and simulate the

LTDP dynamics again; we obtain ρa in the steady state. We repeat this process in the

forward direction, in which κ is increased, and in the backward direction, in which κ

is decreased. Indeed, we obtain a hysteresis curve, as shown for ω = 0.95 in Fig. 4.8.
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Here, we determine the critical point of the first-order transition following the method

used in Refs. [55, 91]. For fixed ω and κ , we set up an initial configuration in which

half of the sites are assigned to the active state and the remaining sites are assigned to

the inactive state, and the LTDP dynamics is simulated. The system reaches either the

absorbing state (ρa = 0) or the active state (ρa > 0) depending on initial configuration

and given κ . We measure the fraction of initial configurations that reach the absorbing

state as a function of κ . The transition point κc is determined as the one at which the

fraction becomes half.

4.5.2 LTCP model in two dimensions

We perform numerical simulations of the LTCP model in two dimensions, in which the

long-range interaction exponent σ is varied in the range [0.1, 3.0] in steps of ∆σ = 0.1.

For each value of σ , we determine both the critical points (κc, ωc) and the tricritical

point (κt , ωt) using the two methods employed in the previous subsection. As in the

phase diagram of the m-TCP model, a second-order (first-order) transition occurs for

ω < ωt(σ) (ω > ωt(σ)). Thus, a tricritical point appears for each value of σ , as shown

in Fig. 4.9(a). The second-order transition belongs to the long-range DP class when

ω�ωt(σ) for the given σ values. However, as ω approaches ωt , the critical exponents

exhibit crossover behavior.

At the tricritical point, the critical exponent values of δ ′, η , z, and δ are obtained

for each value of σ in the range [0.1,3] in steps of ∆σ = 0.1, as shown in Fig. 4.9(b).

The obtained critical values are listed in Table C.1. Each critical exponent value ex-

hibits crossover behavior across σc1 and σc2. The value of σc1 is determined to be 4/3

in two dimensions, because dc = 1.5σc1. For σ < σc1, mean-field behavior occurs,

whereas for σ > σc1, a significant low-dimensional fluctuation effect appears. The up-

per bound σc2, across which the universality class changes from the two-dimensional

LTDP class to the two-dimensional STDP class, was determined using the hyperscal-

ing relation (4.18). We remark that whereas in the regions σ < σc1 and σ > σc2, the
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Figure 4.9: For the LTCP model in two dimensions, (a) plot of the tricritical points in
(κ,ω) space for different σ values in [0.1,3.0]. (b) Plots of the critical exponents z/d,
δ , δ ′, and η as a function of σ . σc1 and σc2 are indicated by vertical dotted lines. The
thin solid lines in the regions σ < σc1 and σ > σc2 are guidelines showing that the
curves converge to constant values.

exponents are constant regardless of σ , in the interval [σc1, σc2], the critical exponents

vary constantly as a function of σ , which is a prototypical pattern that appears in the

long-range CP model.

Indeed, we find numerically that the critical exponent values for σ between [σc1 =

4/3,σc2 ≈ 2.2] vary depending on σ , as listed in Table C.1. For instance, for σ = 2.0,

we obtain the critical exponents directly by measuring the slopes as η = −0.129±
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Figure 4.10: For the LTDP model with σ = 2.0 in two dimensions, plots of (a)
Na(t), (b) P(t), (c) R2(t), and (d) ρa(t) versus t. We obtain the exponent values as
η =−0.129±0.010, δ ′= 1.073±0.010, 2/z= 1.087±0.010, and δ = 0.212±0.010,
respectively. Insets: local slopes of each quantity versus 1/t.

0.010, δ ′ = 1.073± 0.010, z = 1.840± 0.015, and δ = 0.212± 0.010, as shown in

Fig. 4.10. We also obtain the critical exponents using the FSS method. We plot Nat−η

versus tN−z̄ for different system sizes N in Fig. 4.11(a), the rescaled quantity P(t)tδ ′

versus tN−z̄ in Fig. 4.11(b). The exponent ν‖ is obtained from the scaling plot of

Na(t)t−η versus t1/ν‖(κt −κ) for different values of κ in Fig. 4.12(a). The data points

for different κ values collapse well onto the curve for ν‖= 1.07±0.005. In Fig. 4.12(b),

the crossover exponent φ is obtained from the scaling plot of ρa,s(ωt −ω)−β/φ versus

(κ−κc)(ωt−ω)−1/φ for different values of ω . The data points for different values of

ω also collapse well onto a curve for φ = 0.52±0.02. The critical exponent values for

other σ values are listed in Table C.1.

Using the field theory approach, the upper critical dimension was determined to be

dc = 1.5σ [31]. Thus, when σ < 4/3, dc is smaller than d = 2. In this case, when we

perform dimensional analysis, we need to use dc rather than d = 2. For instance, for

hyperscaling analysis, we need to use ν̄ = dcν , i.e., ν̄ = (1.5σ)ν for σ < 4/3 and ν̄ =
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Figure 4.11: For the LTDP model with σ = 2.0 in two dimensions, (a) scaling plot of
Nat−η versus tN−z̄ for η = −0.129 and z̄ = 0.922. (b) Scaling plot of P(t)tδ ′ versus
tN−z̄ for δ ′ = 1.073 and z̄ = 0.922.

2ν for σ > 4/3 in two dimensions. To confirm this scaling theory, for σ = 2.0 > 4/3,

we obtain the dynamic exponent z by directly measuring the local slope of the plot of

R2(t) versus t in Fig. 4.10(c) and the exponent z̄ from the scaling plots in Figs. 4.11(a)

and (b). For σ < 4/3, we also obtain the dynamic exponent z in Fig. 4.13(a) and the

exponent z̄ from the scaling plots in Fig. 4.13(b). Thus, we confirm that z/z̄ is close

to 2 for σ = 2 and 1.204 for σ = 0.8. The hysteresis of the first-order transition for

ω > ωt is shown in Fig. 4.14.
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Figure 4.12: For the LTDP model with σ = 2.0 in two dimensions, (a) scaling plot
of Nat−η versus t1/ν‖(κt − κ) for different values of κ . Data points collapse well
onto a single curve for κt = 0.661663, η = −0.129, and ν‖ = 1.07. (b) Scaling plot
of ρa,s(ωt −ω)−β/φ versus (κ − κc)(ωt −ω)−1/φ for different values of ω . Dotted
(Dashed) line is a guideline with slope βLDP = 0.7316 (βt = 0.2236). Data points col-
lapse well onto a single curve for φ = 0.52.

4.5.3 LTCP model in one dimension

We perform numerical simulations in one dimension, in which the exponent σ was

taken from the interval [0.1, 1.1] in steps of ∆σ = 0.1. For each value of σ , we deter-

mine a critical point (κc,ωc) and a tricritical point (κt , ωt) using the same method as in

the previous subsections. As in the phase diagram of the m-TCP model, a second-order
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Figure 4.13: Plots of LTCP in two dimensions for σ = 0.8. (a) Plot of R2(t) versus
t. Inset represents local slopes of each quantity versus 1/t. (b) Scaling plot of Nat−η

versus tN−z̄ for η = 0 and z̄ = 0.666. We obtain the exponent values as (a) 2/z =
2.491±0.010 and (b) z̄ = 0.666±0.003.

(first-order) transition occurs for ω < ωt(σ) (ω > ωt(σ)).

Next, we determine an interval [σc1,σc2] within which the dynamics of the LTCP

model becomes nontrivial. We first determine that σc1 = 2/3 using the criterion d =

1.5σc1 at d = 1. For σ < σc1, the mean-field solution is valid, and the upper critical

dimension is determined as dc = (3/2)σ . For σ > σc1, the upper critical dimension is

larger than the dimension d = 1. Accordingly, when we use ν̄ = dν , we need to take

ν̄ = (1.5σ)ν for σ < 2/3 and ν̄ = ν for σ > 2/3 in one dimension. We confirm this
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Figure 4.14: For the LTCP model with σ = 1.0 in two dimensions at ω = 0.55 > ωt ,
plot of ρa,s versus κ . A hysteresis curve is obtained. The system size is N = 106.

property by measuring the ratio z̄/z for different σ values smaller than and larger than

σc1. To confirm this scaling theory, for σ = 0.7 > 2/3, we obtain the dynamic expo-

nent z by directly measuring the local slope in the plot of R2(t) versus t in Fig. 4.16(c)

and the exponent z̄ from the scaling plots in Figs. 4.17(a) and (b). For σ < 2/3, we

also obtain the dynamic exponent z in Fig. 4.19(a) and the exponent z̄ from the scaling

plots in Fig. 4.19(b). Thus, we confirm that z/z̄ is close to 1 for σ = 0.7 and 0.749 for

σ = 0.5.

To determine σc2, we recall the previous result that for a short-range DP-type CP

model, a first-order transition does not occur in one dimension [79]. Thus, an STDP

class does not appear in the region σ > σc2 [56]. On the basis of this background,

we need to determine the σ range in which the LTCP universality class exists in one

dimension. Thus, we need to check whether a tricritical point exists in the interval

σc1 < σ < σc2.

The numerical simulation results show that a tricritical point still exists in the re-

gion σ > σc1, but it disappears near σ ' 1.0, as a discontinuous transition does not

occur (Fig. 4.20). Thus, we take σc2 ' 1.0. The tricritical points for given σ values less
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Figure 4.15: For the LTCP model in one dimension, (a) plot of the tricritical points in
(κ,ω) space for different σ values in [0.1,1.0]. (b) Plots of the critical exponent values
z, δ , δ ′, and η as a function of σ at the tricritical point. σc1 and σc2 are indicated by
vertical dotted lines.

than σc2 are determined and shown in Fig. 4.15(a). As σ approaches 1.0 in the phase

diagram, ωt also approaches 1.0 [Fig. 4.15(a)]. By contrast, when ω = 1, the LTDP dy-

namics is frozen because the absorbing state is reached immediately after the dynamics

starts from an initial configuration in which either all the sites are fully active or only

one site is active (see Table 4.1). Thus, the dynamics near σ ≈ 1.0 is so sensitive that

precise numerical measurement of the critical exponents is almost impossible.

At the tricritical point, the critical exponent values of δ ′, η , z, and δ are obtained
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Figure 4.16: For the LTDP model with σ = 0.7 in one dimension at the tricritical
point, plots of (a) Na(t), (b) P(t), (c) R2(t), and (d) ρa(t) versus t. We estimate the
exponent values to be η = 0.000± 0.005, δ ′ = 0.912± 0.01, z = 0.701± 0.01, and
δ = 0.34±0.01, respectively. Insets: local slopes of each quantity versus 1/t.

for each value of σ in the range [0.1,1.0] in steps of ∆σ = 0.1, as shown in Fig. 4.15(b).

The obtained critical values are listed in Table C.2. For σ > σc2, all the transition

lines belongs to the DP class. We remark that whereas in the region σ < σc1, the

exponents are constant regardless of σ , they vary constantly as a function of σ in the

interval [σc1, σc2], which is a prototypical pattern that appears in the long-range CP

model. Indeed, we find numerically that the critical exponent values for σ between

[σc1 = 2/3,σc2 ≈ 1.0] vary depending on σ , as shown in Table C.2. For instance,

for σ = 0.7, we obtain the critical exponents directly by slope measurements as η =

0.000± 0.005, δ ′ = 0.912± 0.01, z = 0.701± 0.01, and δ = 0.34± 0.01, as shown

in Fig. 4.16. We also obtain the critical exponents using the FSS method. We plot

Nat−η versus tN−z̄ for different system sizes N in Fig. 4.17(a), the rescaled quantity

P(t)tδ ′ versus tN−z̄ in Fig. 4.17(b). The exponent ν‖ is obtained from the scaling plot of

Na(t)t−η versus t1/ν‖(κt −κ) for different values of κ in Fig. 4.18(a). The data points
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Figure 4.17: For the LTDP model with σ = 0.7 in one dimension, (a) scaling plot of
Nat−η versus tN−z̄ for η = 0.000 and z̄ = 0.701. (b) Scaling plot of Ptδ ′ versus tN−z̄

for δ ′ = 0.912 and z̄ = 0.701.

for different κ values collapse well onto a curve for ν‖ = 1.05±0.005. In Fig. 4.18(b),

the crossover exponent φ is obtained from the scaling plot of ρa,s(ωt −ω)−β/φ versus

(κ−κc)(ωt−ω)−1/φ for different values of ω . The data points for different values of

ω also collapse well onto a curve for φ = 0.52±0.02. The critical exponent values for

other σ values are listed in Table C.2. The hysteresis of the first-order transition for

ω > ωt is shown in Fig. 4.20.
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Figure 4.18: For the LTCP model with σ = 0.7 in one dimension, (a) scaling plot of
Nat−η versus t1/ν‖(κt −κ) for different values of κ . Data points collapse well onto a
single curve for κt = 0.637508, η = 0.00, and ν‖ = 1.05. (b) Scaling plot of ρa,s(ωt−
ω)−β/φ versus (κ −κc)(ωt −ω)−1/φ for different values of ω . Dotted (Dashed) line
is a guideline with slope βLDP = 0.800 (βt = 0.321). Data points collapse well onto a
single curve with φ = 0.52.

4.6 Conclusion and Discussion

In this paper, we investigated the critical behavior of the LTCP model, i.e., the TCP

with long-range interaction in the form of 1/rd+σ at a tricritical point, in one and two

dimensions. First, we determined the domain of the LTDP universality class in the pa-
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Figure 4.19: For the LTCP model with σ = 0.5 in one dimension, (a) plot of R2(t)
versus t. We obtain the exponent 2/z = 4.004± 0.010. Inset represents local slopes
at each t as a function of 1/t. (b) Scaling plot of Nat−η versus tN−z̄ for η = 0 and
z̄ = 0.666.

rameter space (d, σ ), as shown in Fig. 4.21. The domain is surrounded by the domains

of the low-dimensional STDP class, the mean-field STDP class, and the mean-field

LTDP class. These four domains meet at the point (d,σ) = (3, 2). Below the upper

critical dimension dc = 3, the domain of the LTDP class is sandwiched between those

of the low-dimensional STDP and the mean-field LTDP class, denoted as the shaded

area bounded by σc1(d) < σ < σc2(d) for each d. Analytically, σc1(d) was deter-

mined using the formula σc1 = (2/3)d, which was derived by dimensional analysis in
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Figure 4.20: Plot of ρa,s versus κ for the LTCP model in one dimension. (a) With
σ = 0.7 at ω = 0.9 > ωt , a hysteresis curve is obtained. (b) With σ = 1.0 at ω = 0.97,
a hysteresis curve does not occur. The system size is taken as N = 106.

Figure 4.21: Diagram of universality classes of the LTCP model in the parameter space
(d,σ ). Mean-field solution is valid beyond the upper critical dimension line (bold line),
min(3, 1.5σ). The slope of the dashed line near (d, σ) = (3, 2) is 0.0304, according
to Eq. (4.18), and is indicated by a short solid line. The dot at (2, 2.2) indicates the
σc2 value obtained from numerical simulations of the LTCP model in two dimensions.
The dot at (1, 1.0) was numerically estimated for d = 1 and indicates σc2. The dashed
curves connecting these three points separate the STDP region from the LTDP region.
Along the thin solid line above the point (1,1) in one dimension, a tricritical point is
absent, so this thin line is excluded from the STDP region.
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the mean-field limit. σc2(d) was determined using d + z(1− δ − δ ′), where z, δ , and

δ ′ are the exponents of the STDP class. Near the point (3, 2), using the ε expansion of

the RG approach for the STDP class [53,78], we obtained σ = 2−0.0304ε +O(ε2) in

d = 3− ε spatial dimensions. Therefore, we obtained the tangent of the phase bound-

ary between the STDP and LTDP domains as ∆σ/∆d ≈ 0.0304 near the point (3, 2)

in Fig. 4.21.

Second, we numerically determined the critical exponent values at the tricritical

point for d = 1 and d = 2. The numerical results showed that although the critical ex-

ponents are independent of the control parameter σ for σ < σc1 and σ > σc2, they vary

continuously with σ between [σc1,σc2]. The numerical values of the critical exponents

are listed in Tables C.1 and C.2 (Appendix C.3).

We unexpectedly obtained the following noteworthy behavior. First, in two dimen-

sions, the numerically obtained value of σc2 was not consistent with the theoretical

value based on the STDP class; rather, it was close to the value obtained using the DP

class. Second, in one dimension, the boundary σc2 could not be determined from the

STDP class, because the first-order transition does not occur in one dimension for the

ordinary CP model. Thus, we determined σc2 only numerically.

The LTCP model in one dimension is particularly notable. For each given σ in the

range [0.1,1.0] in steps of ∆σ = 0.1, as shown in Fig. 4.15(a), there exists a tricritical

point (κt ,ωt). This figure shows that ωt increases with increasing σ . We also found that

the gap in the discontinuous transition near the tricritical point at σ = 0.7 (Fig. 4.20

(a)) is supposed to be decreasing as increasing σ and eventually the gap diminishes at a

characteristic value of σ , denoted as σc2 and estimated to be σc2 ≈ 1.0 (Fig. 4.20 (b)).

This implies that ωt approaches ωt → 1, the upper bound of the pair-branching prob-

ability ω . In the semi-classical approach, the quantum coherence effect was regarded

as the classical effect of a pair-branching process with the control parameter ω . Thus

when ω = 1, the LTCP model most highly reflects the quantum coherence effect. On

the other hand, the previous studies [92–94] of QCP in one dimension revealed that
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the tricritical point does not occur. This previous result seems to be associated with

the current result that the tricritical point disappears beyond ω = 1 as σ > 1. This is

also consistent with another previous result that the STCP model, corresponding to the

limit σ → ∞ of the LTCP model, does not exhibit any discontinuous transition [79] in

one dimension owing to strong fluctuation effect.

In this respect, although a discontinuous transition was not observed in short-range

QCP in one dimension [92, 93], we guess that it could occur in long-range QCP in

one dimension. In this case, a tricritical point and a new emerging behavior could be

observed. An experiment of Rydberg atoms exciting to d-state is a potential candidate.

Due to dipole interactions, long-range interaction is intrinsically generated.

Finally, we shall discuss the tricritical contact process in scale-free network. Re-

cently, it was revealed that the homogeneous mean-field universality of the tricrticial

contact process corresponds to that of the simplicial susceptibile-infected-susceptible

model [95]. Moreover, it was shown that this model in scale-free network [96] exhibits

the hybrid transition [97] (which contains natures of both first-order and second-order

phase transitions).

In summary, we obtained the diagram of universality classes based on the analyt-

ical and numerical results in Tables C.1 and C.2 (Fig. 4.21). The local slope at d = 3

was determined by inserting the results of ε expansion for the STDP class [53,78] into

Eq. (4.18). The values of σc2 in one and two dimensions were numerically obtained.

In Ref. [98], the discrepancy between the simulated and field-theoretical σc2 values is

reported for other models such as the Ising [99, 100] and percolation models [101].

Here, although we obtained the Monte Carlo simulation results, the ε expansion of the

LTCP model is still missing. Thus, further studies are needed from the perspective of

RG theory.
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Chapter 5

Simulation method of quantum systems

This chapter briefly covers the simulation method of open quantum systems: quantum

jump Monte Carlo method [102, 103] and tensor network method [104]. The quantum

jump Monte Carlo method is the exact simulation method to study the open quantum

systems. However, this method is hard to perform the large systems size, due to the

exponential complexity of Hilbert space as the system size increases. On the other

hand, the tensor network methods have a advantage in efficiently compressing the

memory, which enables to perform the large system size. Those two methods will be

used for calculating the dynamics of open quantum many-body systems throughout

the rest of the thesis.

5.1 Quantum jump Monte Carlo method

The quantum jump Monte Carlo (QJMC) (also known as Monte Carlo wavefunction)

was derived in the 1990s. It is a numerical Monte-Carlo analysis used to solve the Lind-

blad equation describing the interaction between a quantum system and a Markovian

environment. Open quantum systems are characterized by the presence of decoher-

ence and dissipation. Decoherence makes the quantum objects behave classically (the

emergence of classicality within quantum theory) and dissipation is induced by energy

loss by the environment. Let us consider the one-dimensional spin-1/2 system with

N sites. Dealing with the density matrix with the size 2N × 2N is beyond the scope

of the memory capacity even in modern computer. Thus instead of dealing with the

93



Figure 5.1: Flowchart of quantum jump Monte Carlo method. Repeat until t = Tend.

density matrix, it is more feasible to simulate a wave function with the size 2N . Then

pure states are propagated in time, with the dissipative process being described by a

modification to the Hamiltonian, combined with quantum jumps.

5.1.1 Derivation

The Lindblad equation can be rewritten as

∂t ρ̂ =−i
(

Ĥeffρ̂− ρ̂Ĥ†
eff

)
+
∑

k

L̂mρ̂L̂†
m, where Ĥeff = Ĥ− i

2

∑
m

L̂†
mL̂m . (5.1)

This Hamiltonian is not the usual sense since it is not Hermitian, so its eigenvalues are

not the energy. The first two terms in Eq. (5.1) can be interpreted as time evolution of

this effective Hamiltonian

|ψ(t +δ t)〉= e−iHeffδ t |ψ(t)〉 , (5.2)
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where the time evolution operator is non-unitary. Thus, a normalization factor should

be taken into account

〈ψ(t +δ t)|ψ(t +δ t)〉= 1−δ p , (5.3)

and δ p is defined as

δ p =
∑

m

δ pm +O(δ t2) = δ t
∑

m

〈ψ(t)|L̂†
mL̂m|ψ(t)〉+O(δ t2) . (5.4)

Thus, the normalized wave function of non-Hermitian time evolution is given by

|ψevol(t +δ t)〉= e
−iHeffδ t |ψ(t)〉√

1−δ p
. (5.5)

Next, we can interpret the last term in Eq. (5.1) as the a quantum jump operator:

∣∣ψjump(t +δ t)
〉
=

L̂m |ψ(t)〉√
〈ψ(t)|L̂†

mL̂m|ψ(t)〉
, (5.6)

with probability δ pm. Expanding the density matrix of an ensemble of pure states

ρ̂ =
∑

k pk|ψk〉〈ψk|= E [|ψ〉〈ψ|], Eq. (5.1) is written as

ρ̂(t +δ t) = E
[
(1−δ p)|ψevol(t +δ t)〉〈ψevol(t +δ t)|+

∑
m

δ pm|ψjump〉〈ψjump|
]
.(5.7)

This representation can be interpreted as two possible outcomes for random number

ε ∈ [0,1]:

1. ε > δ p: time evolution by the non-Hermitian Hamiltonian given by Eq. (5.5).

2.
∑m−1

i=0 δ pi < ε <
∑m

i=0 δ pi: the mth quantum jump operator occurs given by

Eq. (5.6).

The flow chart in QJMC simulations is shown in Fig. 5.1. In the next section, we will

present the tensor network method, which can be used to perform the simulation in
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large system size.

5.2 Tensor network method

5.2.1 Matrix product state

The matrix product state (MPS) is popular technique to numerically calculate physical

observables in one dimension. Let us consider the one-dimensional spin-1/2 system

with N sites. Then the wave function is represented as

|ψ〉=
∑

s1,··· ,sN

cs1,··· ,sN |s1, · · · ,sN〉 . (5.8)

The exact description of the coefficient demands the exponential complexity as the sys-

tem size increases. In this case, it is very challenging to simulate the quantum system

above N = 20. Thus, to reduce the number of the coefficient, one uses the following

expression:

cs1,··· ,sN → cs1 · · ·csN . (5.9)

However, this approximation cannot represent the entangled state, e.g. singlet state for

|ψ〉= 1/
√

2(|↑↓〉− |↓↑〉) due to c↑↓ 6= c↓↑. To circumvent this problem, matrix product

states is suggested by replacing the coefficient as the matrix

cs1 · · ·csN →Ms1 · · ·MsN , (5.10)

where the dimension of the matrix is called the bond dimension χ . This written form

is called MPS and linearly proportional to the system size. Specifically, the number of

coefficients for Eq. (5.8), Eq. (5.9), and Eq. (5.10) are given by O(2N), O(2N), and

O(2Nχ2), respectively. The example of MPS of 1d systems is given as follows.
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• Singlet state of 2-qubit: |ψ〉= 1√
2
(|↑↓〉− |↓↑〉) .

M↑1 = (
1√
2

0), M↑2 =

 0

−1

 , M↓1 = (0
1√
2
), M↓2 =

 1

0

 .

c↑↓ = M↑1 M↓2 =
1√
2
, c↓↑ = M↓1 M↑2 =− 1√

2
.

• W state of 3-qubit: |ψ〉= 1√
3
(|↑↓↓〉+ |↓↑↓〉+ |↓↓↑〉) .

M↑1 = (
1√
3

0), M↑2 =

 0 0

1 0

 , M↑3 =

 0

1

 ,

M↓1 = (0
1√
3
), M↓2 =

 1 0

0 1

 , M↓3 =

 1

0

 .

c↑↓↓ = M↑1 M↓2 M↓3 =
1√
3
, c↓↑↓ = M↓1 M↑2 M↓3 =

1√
3
, c↓↓↑ = M↓1 M↓2 M↑3 =

1√
3
.

Now, the question is how to make MPS for the given quantum state. To represent any

quantum state, singular value decomposition (SVD) from linear algebra is used.

5.2.2 Time evolving block decimation

The time-evolving block decimation (TEBD) is a method to evolve the time dynamics

using MPS. To this end, this method relies on a Trotter-Suzuki decomposition of a

local Hamiltonian H =
∑

j h j, j+1 = H1 +H2 +H3 + · · · . For a small time step τ , the

Trotter-Suzuki decomposition is represented as

|ψ(τ)〉= e−τH |ψ〉= e−τH1/2e−τH2/2e−τH3/2 · · ·e−τH3/2e−τH2/2e−τH1/2 |ψ〉+O(τ3) .

Then, combining the MPS and the TEBD, we can rewrite the flow chart in QJMC

simulations in Fig. 5.2.
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Figure 5.2: Flowchart of quantum jump Monte Carlo method with the MPS and TEBD.
Repeat until t = Tend.
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Chapter 6

Critical behaviors of 1d-QCP and 2d-QCP using

quantum simulations

Major contents of this chapter is based on the preprint [36].

6.1 Introduction

Quantum critical phenomena in nonequilibrium systems have attracted considerable

attention recently [75, 105–122] with the development of experimental techniques in

cold atomic physics such as trapped ions [108] and lattices of ultracold ions [109–111];

driven circuit quantum electrodynamics systems [112]; and semiconductor microcav-

ities [113]. The quantum criticality in the equilibrium state may be perturbed by the

external environment, and thus the combined system is left in a non-equilibrium state.

Here, we are interested in dissipative phase transitions arising from competition be-

tween the coherent Hamiltonian dynamics and incoherent dissipation process [5–17].

For these systems, questions arise as to whether the competition between quantum

coherent and classical incoherent fluctuations produces another type of universal be-

havior [7,17] and the conditions under which they exhibit classical critical behavior in

terms of the loss rates to the environment [9, 10, 12].

Here, we aim to answer these questions by considering the quantum contact pro-

cess [25, 26, 31, 92–94, 123, 124] in one dimension (1d-QCP). In the contact process

(CP), each element of the system is in an active or inactive state, and its state changes

according to given CP rules [20, 28, 29, 38, 40, 41, 45]. When all the elements are in
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Figure 6.1: Schematic phase diagram of the QCP in the parameter space (κ , ω) in the
mean-field limit (inside, d ≥ dc, where d is the spatial dimension and dc = 3 is the
upper critical dimension), in two dimensions (middle, d = 2), and one dimension (out-
side, d = 1). “ab” and “ac” represent absorbing phase and active phase, respectively.
For d ≥ dc, discontinuous (dashed curve) and continuous transitions (solid line) occur,
and they meet at a tricritical point. For d = 2, a continuous DP transition occurs over
the entire region [0,κc]. For d = 1, a continuous DP transition occurs in the region
[κ∗,κc]; however, in the interval [0,κ∗], the exponent α of the density of active sites
n(t)∼ t−α from a homogeneous initial state decreases continuously as κ is increased
with QDP values.

the inactive state, the system becomes trapped in a frozen configuration and no further

dynamics proceeds. This absorbing phase transition of the classical CP that belongs

to the directed percolation (DP) universality class. Meanwhile, the DP transition ap-

pears in diverse nonequilibrium systems; however, its experimental observation had

been elusive but a couple of exceptions in turbulent liquid crystals [46] and Rydberg

atoms [24]. Here, we focus on the recent observation of the 1d-QCP in the dissipative

quantum system of Rydberg atoms.

The dynamics of the 1D-QCP is described by the Lindblad equation, which con-

sists of a Hamiltonian and dissipative terms. Their contributions to the overall dynam-
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ics are adjusted by the model parameters ω (for the coherent quantum effect) and κ (for

the incoherent classical dynamics). Thus, the system can exhibit a quantum or classical

phase transition in extreme cases. A previous result based on the semiclassical mean-

field solution [25] showed that the QCP exhibits a continuous (discontinuous) phase

transition when κ is large (small). Thus, a tricritical point (TCP) exists, as shown in

Fig. 6.1. The continuous transition belongs to the mean-field DP (MF-DP) universality

class, and the TCP belongs to the mean-field tricritical DP (MF-TDP) class.

Using the functional renormalization approach, it was revealed that as dimension

is decreased from the upper critical dimension dc = 3, the tricritical point shifts to-

ward the quantum axis with κ = 0 [94]. This indicates that a quantum phase transition

would occur only for the case κ = 0. This behavior may be analogous to the fact that

a quantum phase transition in equilibrium systems occurs only at zero temperature.

Associated with this conjecture, a recent numerical study [123] of the 1d-QCP with

κ = 0 using the tensor network approach [92, 93, 123] revealed that the QCP exhibits

a continuous transition in a quantum DP class: When the dynamics starts from a ho-

mogeneous state, i.e., all the sites are in the active state, the density of active sites at

time t, denoted as n(t), decays as n(t) ∼ t−α at a quantum critical point ωc. The ex-

ponent α ≈ 0.32 obtained by the tensor network approach differs from the DP value

αDP≈ 0.16. However, other exponents except the hyperscaling exponent ν⊥ for spatial

correlation length have the DP values. In fact, the inconsistency of ν⊥ is inevitable, be-

cause the tensor network approach is not valid for strong entangled quantum systems.

Using the quantum jump Monte Carlo approach, we obtain ν⊥ as the DP value, which

will be presented later. On the other hand, when the QCP starts from a heterogeneous

state, i.e., all the sites but one site are in the inactive state, all critical exponents have

the classical DP values. Thus, the critical behavior of the 1d-QCP with κ = 0 depends

on the initial configurations.

In many dissipative quantum systems, quantum phase transitions would reduce to

corresponding classical ones. This was expressed in terms of the quantum-to-classical
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mapping [4]. This originates from that the quantum critical behavior in d spatial di-

mensions corresponds to the classical critical behavior in d + z dimensions, where z

is the dynamic critical exponent of the quantum system. This mapping was proposed

based on the field theoretical argument that imaginary time in the quantum system acts

as an additional dimension in the corresponding classical system.

For 1d-QCP, here we are interested in how the quantum behavior responds to an

external perturbation, that is, how the quantum behavior is changed to the classical DP

behavior as the strength κ of classical fluctuations is increased from zero. We find that

there exists an interval [0,κ∗] in which the exponent α decreases continuously from

the quantum value α ≈ 0.32 to the DP value ≈ 0.16 as κ is increased from κ = 0 to

κ∗. The phase diagram for the 1d-QCP is shown in Fig. 6.1. This result implies that the

quantum effect still remains to some extent in the region κ = [0,κ∗]. This indicates that

the crossover from the 1d-QCP class to the classical DP class occurs in a soft-landing

manner.

We extend our studies to two dimensional QCP (2d-QCP). Using the functional

renormalization approach, it was conjectured that the 2d-QCP exhibits a discontinu-

ous transition at κ = 0 [26]. However, we find that the transition is continuous. More-

over, the continuous transition belongs to the classical DP class. The exponent α for

the homogeneous initial condition has the DP value. Thus, the intermediate region

[0,κ∗] is absent. This implies that the strength of quantum fluctuations is weaker than

that of classical fluctuations in two dimensions. For higher dimensions d ≥ dc = 3, a

discontinuous transition occurs at κ = 0.

The critical behaviors of the 1d-QCP and 2d-QCP are obtained in the following

ways. Once using the neural network (NN) machine learning algorithm, the transition

point ωc(κ) for each given κ is determined. Then at ωc(κ), applying finite-size scaling

(FSS) analysis for different system sizes, the exponent ν⊥ is determined [127–129]. At

the transition point ωc(κ), using the quantum jump Monte Carlo (QJMC) method [102,

103] as well as the tensor network method, to confirm in large system sizes, other
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critical exponents are determined.

The 1d-QCP is experimentally realizable in the dissipative quantum system of

Rydberg atoms. An essential factor in this experiment is so-called antiblockade: An

inactive (active) spin is activated (inactivated) by detuning the excitation energy as

much as the interaction energy to the active spin at the nearest neighbor. Moreover,

when the strength of dephasing noise is sufficiently strong, the quantum coherences

are suppressed and then the dynamics may be reduced to the classical CP process [23].

Otherwise, quantum coherence is effective, and a mixed of coherent and incoherent

CPs can be realized [25,26]. Thus, by controlling the ratio between the Rabi frequency

and the dephasing rate, one may find the crossover behavior from a quantum to a clas-

sical nonequilibrium phase transition. It was revealed that the classical parameter is

related to κ = 4Ω2/Γ, where Ω is the Rabi frequency and Γ is the dephasing rate [23].

The derivation is shown in Appendix. Thus for Ω <
√

κ∗Γ/2, the quatum-DP (QDP)

behavior appears. This region is a quantum critical region where the quantum fluctua-

tions play a role in universal behavior.

The paper is organized as follows: We first introduce the 1d-QCP model, and spec-

ify the classical and quantum limits in Sec. 6.2. The structure of our NN and optimiza-

tion scheme are presented in Sec. 6.3.1. Finite-size scaling behaviors using the NN,

QJMC and tensor network methods; the universality class; and the crossover behav-

ior are presented in Sec. 6.3.3. Summary and final remarks are presented in Sec. 6.4.

Additionally, technical details of QCP in the classical limit using the quantum Monte

Carlo method, neural network approach with different training regions, and the deriva-

tion of the model parameter κ for the classical dynamics in terms of the experimental

parameters of Rabi frequency Ω and dephasing rate Γ are presented in Appendices.

6.2 Model

We consider a one-dimensional quantum spin chain with a periodic boundary condi-

tion, where each state of a site ( active or inactive) represents the up or down spin state,
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Figure 6.2: Plots using QJMC method. (a). Trajectory of the 1d-QCP with κ = 0 and
ω > ωc from a single active site at the center. (b). Histogram of the densities of active
sites in steady states as a function of ω for system size N = 20. The data are obtained
using QJMC simulations. Time t and the control parameter ω are given in units of 1/γ

and γ , respectively.

denoted as |↑〉 or |↓〉 . A QCP consists of three incoherent and two coherent processes:

i) decay, in which an active site is incoherently inactivated spontaneously at a rate γ; ii)

incoherent branching or coagulation, in which an active particle incoherently activates

or inactivates an inactive particle at the nearest-neighbor site at a rate κ , respectively;

and iii) coherent branching or coagulation, which is a quantum counterpart of process

ii) driven by a Hamiltonian at a rate ω , respectively. The classical ii) and quantum iii)

rules are in competition, which may change the transition behavior.

The time evolution of the density matrix ρ̂ is described by the Lindblad equation,

which consists of the Hamiltonian and dissipative terms [27]:

∂t ρ̂ =−i
[
ĤS, ρ̂

]
+
∑

a=d,b,c

N∑
`=1

[
L̂(a)
` ρ̂L̂(a)†

` − 1
2

{
L̂(a)†
` L̂(a)

` , ρ̂
}]

. (6.1)

The Hamiltonian ĤS, which governs the branching and coagulation processes and rep-

resents coherent interactions, is expressed as

ĤS = ω

N∑
`=1

[
(n̂`−1 + n̂`+1) σ̂

x
`

]
. (6.2)
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Figure 6.3: Plots using neural network method. (a) Plot of the output averaged over
a test set as a function of ω for different system sizes. Solid (dashed) line represents
the values of the first (second) output neuron. From this plot, we estimate the crossing
point of the two outputs and regard it as the transition point ωc(N) for a given system
size N. (b) Plot of ωc−ωc(N) versus N, where ωc is chosen so as to yield power-law
behavior and is regarded as the transition point in the thermodynamic limit. The slope
represents the value of the critical exponent −1/ν⊥. (c) Scaling plot of the output ver-
sus (ω−ωc)N1/ν⊥ . For the obtained numerical values of ν⊥ and ωc, the data collapse
well for system sizes N = 10,12,14,16, and 18.

Here σ̂ i
l denotes the Pauli matrix, where the superscript and subscript stand for the spin

axis and site index, respectively, and n̂l means the number operator for a up spin at the
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lth site. The Lindblad decay, branching, and coagulation operators are given by

L̂(d)
` =

√
γ σ̂
−
` , (6.3)

L̂(b)
` =

√
κ (n̂`−1 + n̂`+1)σ̂

+
` , (6.4)

L̂(c)
` =

√
κ (n̂`−1 + n̂`+1)σ̂

−
` , (6.5)

respectively. σ̂
+
` and σ̂

−
` are the raising and lowering operators of the spin at site `,

respectively; they are defined in terms of the spin basis as σ̂+ = |↑〉〈↓| and σ̂−= |↓〉〈↑|.

In addition, n̂ = σ̂+σ̂− and σ̂ x = σ̂+ + σ̂− are the number operator and spin flip

operator, respectively. In addition, we rescale time and the quantum control parameters

ω and κ in units of γ; therefore, we set γ = 1.

Quantum branching and coagulation occur at a rate ω , and the corresponding clas-

sical processes occur at a rate κ . When ω→ 0, the model is reduced to the classical CP,

which belongs to the DP class. Here, we first consider the pure quantum limit κ → 0

but with finite ω . The opposite limit ω → 0 with finite κ , and the case of both ω and

κ being finite are discussed in Appendix D.1.

When ω is small, inactive particles become more abundant with time, and eventu-

ally the system is fully occupied by inactive particles. Thus, the system is no longer dy-

namic and falls into an absorbing state, which is represented by ρ̂ab = |↓ · · · ↓〉〈↓ · · · ↓|.

When ω is large, the system remains in an active state with a finite density of active

particles [Fig. 6.2(a)]. Thus, the QCP exhibits a phase transition from an active to an

absorbing state as ω is decreased.

6.3 Results

6.3.1 NN approach

The NN approach has recently served as a powerful tool [130, 131] for understand-

ing phase transitions in classical systems [127], which exhibit patterns involving many
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Figure 6.4: Schematic illustration of the convolutional neural network built in combi-
nation of a one-dimensional convolutional layer (1d-Conv) and a fully connected layer
(FC). The red circles represent the activation function of each layer. The green circles
below the arrows represent the batch normalization.

components. Each component has one of two values, for instance, the up and down

spin states in ferromagnetic systems. By contrast, each component of a quantum sys-

tem has a real value, and thus the patterns are much more complex. Nevertheless,

the NN approach has reportedly been successfully used to determine the transition

points of closed quantum systems on the basis of simulation data [132–134] and ex-

perimental images [135, 136]. On the other hand, for quantum dissipative systems,

an unsupervised NN approach was used to generate the configurations in steady state

[137–141]. This approach was efficient, because it spends less computing resources

to generate configurations compared to conventional simulations. Meanwhile, in dissi-

pative quantum systems, to determine a transition point accurately, large system sizes

are necessary and thus a huge computing resources for simulations. Here, we use the

NN approach as an alternative way and obtain an accurate transition point enough to

investigate the critical behavior of 1d-QCP at the transition point.
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For classical systems, the transition point of a continuous absorbing transition is

normally indicated by the presence of power-law behavior of the order parameter with

respect to time [32, 38]. Consequently, a large system size is required to identify the

transition point. Accurately identifying the transition point using QJMC simulations

of the QCP is even more difficult and is thus a challenging problem. To overcome

this difficulty, we notice that the system is in the absorbing state for ω � ωc and in

the active state for ω � ωc. Combining this observation with a recently proposed NN

supervised learning concept, we identify the transition point as follows.

To implement the NN approach, we first organize a dataset of the occupation prob-

ability of site `, which is denoted as p`(t) = Tr[ρ̂(t)n̂`]. Using the QJMC method, we

generate a steady-state configuration and obtain the occupation probabilities of each

site, {p`}. We collect 5×103 configurations in ω ∈ [0,12] at ∆ω = 0.04 intervals. To

prepare the training dataset for supervised learning, we label the configurations using

one-hot encoding [142], where the absorbing state (ω ∈ [0,4]) is encoded as (0,1), and

the active state (ω ∈ [8,12]) is encoded as (1,0) [see shaded regions in Fig. 6.3(a)].

After we collected the snapshots, we tried to train the NN. The objective of the

learning procedure is to optimize the neural network to adjust the weights of con-

nections between neural units to achieve a variational minimization of a properly de-

fined cost function. To this end, we construct the hidden layers of the NN, including

one-dimensional convolutional layers, batch normalization layers [143], and fully con-

nected layers, as shown in Fig. 6.4. We employ the framework of TENSORFLOW [144]

and use ReLU and tanh for the activation function in the hidden layer. Two neurons

in the output layer are used, and a softmax function is used as the activation function

in the output layer. We employ the cross-entropy or the mean-square error function

as the cost (error) function of the NN, which is then optimized using Adam [145] or

RMSProp. We change the architecture and optimization algorithms in various ways.

Regardless of these changes, the well-trained machines produce consistent results. To

check the sensitivity of the positions of the left and right boundaries, the NN ap-
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proach with different training regions is described and its results are presented in Ap-

pendix D.3. Once the NN is well-trained with the labeled training dataset in the two

regions, we obtain the outputs for the entire ω region.

Next, using the obtained transition points ωc(N) for given system sizes, we per-

form FSS analysis and identify the transition point in the thermodynamic limit ωc. We

also determine the correlation length exponent ν⊥. Next, we determine the other crit-

ical exponents by performing extensive QJMC simulations up to system size N = 20

and tensor network method of a large system N = 80 at ωc. Specifically, tensor net-

work method is implemented by the QJMC method with the matrix product states and

time-evolving block decimation.

6.3.2 Finite-size scaling analysis for 1d-QCP

In Fig. 6.3(a), the two outputs of the NN indicate the predictabilities that the system

will fall into the absorbing state and remain in the active state, respectively. The cross-

ing point of these outputs indicates a transition point ωc(N) for a given system size

N [Fig. 6.3(a)]. Several studies [127–129] showed that the predictability exhibits FSS

behavior. Using the obtained ωc(N) for different system sizes, we determine ωc in the

thermodynamic limit by plotting ωc−ωc(N) versus N [Fig. 6.3(b)], which is expected

to behave as ωc−ωc(N)∼N−1/ν⊥ . Indeed, the plot exhibits power-law behavior when

an appropriate value of ωc is chosen, and the critical exponent ν⊥ is obtained from the

slope of the power-law curve. We obtain ωc ≈ 6.04 and ν⊥ = 1.06± 0.04; the latter

is in agreement with the value of ν⊥ ≈ 1.096 for the DP class in one dimension, but

differs from the value of ν⊥ ≈ 0.5±0.2 obtained using the tensor network approach.

The scaling plot is drawn in the form of the output versus (ω−ωc)N1/ν⊥ for different

N values [Fig. 6.3(c)]. The data for different system sizes seem to collapse.

Next, we measure the values of the other critical exponents using the quantum

jump Monte Carlo (QJMC) method in the critical region around ωc and the tensor

network method for larger system sizes. First, we take an initial state in which a sin-
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gle active seed is present at ` = 0, and the remaining sites are inactive. This con-

figuration is expressed as ρ̂(0) = σ̂
+
0 ρ̂abσ̂

−
0 . We measure the following quantities:

i) the survival probability, that is, the probability that the system does not fall into

an absorbing state, P(t) = 1− Tr[ρ̂(t)ρ̂ab]; ii) the number of active sites, Na(t) =∑
` Tr[ρ̂(t)n̂`]; iii) the mean square distance of the active sites from the origin, R2(t) =∑
` Tr[`2 ρ̂(t)n̂`]/Na(t); iv) the density of seed-site over all runs, ρd(t)=Tr[ρ̂(t)n̂`=0]∼

Na(t)/R(t); and v) the density of seed-site over surviving runs, ρd,s(t) = ρd/P(t).

At the transition point, these quantities exhibit the following power-law behaviors:

P(t) ∝ t−δ ′ , Na(t) ∝ tη , R2(t) ∝ t2/z, ρd(t) ∝ tη−1/z, and ρd,s(t) ∝ t−δ . For the relation

ρd(t) = ρd,s(t)P(t)∼ t−δ−δ ′ , the scaling relation η−1/z =−(δ +δ ′) holds. We esti-

mate the exponents δ +δ ′, η , δ ′, z, and δ by direct measurement of the slopes in the

double-logarithmic plots, as shown in Fig. 6.5. We estimate the exponent z using the

data collapse technique. For instance, for the survival probability P(t), we plot P(t)tδ ′

versus tN−z for different system sizes N. We determine z as the value at which the data

for different system sizes collapse onto a single curve. The values of critical exponents

are in good agreement with the DP values within the error bars (Table I).

Table 6.1: Critical point and critical exponents for the 1d-QCP.
1d-QCP from 1d-QCP from

1d-DP
CNN+QJMC tensor network [92, 93]

ωc 6.04 6.0±0.05 —
δ ′ 0.16±0.05 0.26±0.04 0.159
z 1.55±0.06 1.61±0.16 1.581
η 0.30±0.05 0.26±0.05 0.313

δ +δ ′ 0.32±0.01 0.36±0.12 0.318
α 0.32±0.01 0.36±0.08 0.159
ν⊥ 1.06±0.04 0.5±0.2 1.096

Second, we take a homogeneous initial state in which the entire system is occu-

pied by active sites at t = 0, which is expressed as ρ̂(0) = |↑ · · · ↑〉〈↑ · · · ↑|. From this

initial state, we measure vi) the density n(t) of active sites at time t averaged over all
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Figure 6.5: Estimates of the critical exponents of the 1d-QCP starting from a single
active site. (a) Plot of ρd(t) versus t, which behaves as ρd(t)∼ t−δ−δ ′ . (b) Scaling plot
of ρd(t)tδ+δ ′ versus tN−z for δ +δ ′ = 0.32 and z = 1.55. (c) Scaling plot of Na(t)t−η

versus tN−z for η = 0.30 and z = 1.55. (d) Scaling plot of P(t)tδ ′ versus tN−z for
δ ′ = 0.16 and z = 1.55. (e) Plot of R2(t) as a function of t. (f) Scaling plot of ρd,s(t)tδ

versus tN−z for δ = 0.16 and z = 1.55.
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Figure 6.6: Estimates of the critical exponent α and ν‖ from the homogeneous state.
(a) Plot of n(t) as a function of t for different system sizes when κ = 0, which shows
that n(t) ∼ t−α , with α = 0.32. (b) Data points collapse well onto a single curve for
ωc = 6.04, α = 0.32, and ν‖ = 1.73. The units of control parameter is given as γ .

runs. This quantity is formulated as n(t) = (
∑

` Tr[ρ̂(t)n̂`])/N. We find that n(t) ex-

hibits power-law decay as n(t) ∼ t−α with the exponent α = 0.32± 0.01, as shown

in Fig. 6.6(a). This value is consistent with the result obtained by applying the ten-

sor network approach; however, it is not consistent with the corresponding DP value,

which was estimated as αDP = 0.16. Therefore, the 1d-QCP for κ = 0 creates another

universal behavior.

In Fig. 6.6(b), the exponent ν‖ is obtained from the rescaling plot of n(t)tα versus

t(ωc−ω)ν‖ for different ω values. The ω values are taken from the region used in

classical contact process [Fig. D.2(b)]. We obtain ν‖ = 1.73 and thus ν⊥ = ν‖/z '

1.095. This value is consistent with the one from the NN approach.

We note that ρd(t) and n(t) are actually the same quantity even though they emerge

from different initial states [146]. They exhibit the same critical behaviors in the CP

class (see Appendix D.2), but they exhibit different critical behaviors for the 1d-QCP.

This behavior is unusual, because the universality class is independent of the initial

state according to the theory of critical phenomena. To understand the underlying

mechanism, we increase the control parameter κ from zero to κ = 0.6 in steps of

0.2 and explore the behavior of n(t) at each ωc(κ) [Fig. 6.7(a)]. We find that the value
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of α decreases continuously from 0.32 for κ = 0 to α = 0.16 for κ = 0.6. Furthermore,

we perform the tensor network method based on the matrix product states and time-

evolving block decimation to confirm in large system size [Fig. 6.7(b)]. Using the FSS

analysis, we determine the exponent z for each given κ [Fig. 6.7(c)−(f)]. These results

suggest that α decreases continuously as κ is increased and reaches the DP value at

κ∗ ≈ 0.58. (Table 6.2)

6.3.3 Finite-size scaling analysis for 2d-QCP

We investigate the critical behavior of QCP in two dimensions (2d-QCP). At κ =

0, we find that the 2d-QCP exhibits the continuous absorbing state phase transition.

Taking a similar steps of the 1d-QCP, we obtain the critical exponents of 2d-QCP

using the QJMC simulations. For κ = 0, we obtain ωc ≈ 0.94. At this ωc, we find

that n(t) exhibits power-law decay as n(t) ∼ t−α with α = 0.45± 0.03, as shown

in Fig. 6.8(a). This value is in agreement with the corresponding DP value in two

dimensions. In Fig. 6.8(b), the exponent ν‖ is determined by rescaling plot of n(t)tα

versus t(ωc−ω)ν‖ for different ω as ν‖ = 1.30. Thus, the critical exponents obtained

from the homogeneous initial state are good agreement with the DP values within the

error bars.

Next, we estimate the exponents η and δ ′ by direct measurement of the slopes in

the double-logarithmic plots, as shown in Fig. 6.9. We estimate the exponent z using

the data collapse technique. For instance, for the survival probability P(t), we plot

P(t)tδ ′ versus tN−z for different system sizes N. We determine z as the value at which

the data for different system sizes collapse onto a single curve. For the 2d-QCP, we

find that the rapidity-reversal symmetry holds because α = δ ′. The values of critical

exponents are in good agreement with the DP values within the error bars. Therefore,

the 2d-QCP for κ = 0 belongs to the DP class. We conclude that the quantum coherent

effect is irrelevant in two dimensions.
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Table 6.2: Critical exponent α for different κ values.

κ α

0.0 0.32±0.01

0.1 0.28±0.01

0.2 0.24±0.01

0.3 0.22±0.01

0.4 0.20±0.01

0.5 0.18±0.01

≥ 0.58 1d DP values

6.4 Discussion

We investigated 1d-QCP and 2d-QCP as prototypical examples of nonequilibrium ab-

sorbing phase transitions in dissipative quantum systems. The phase diagram was ob-

tained (Fig. 6.1) in the parameter space (κ , ω), which represent the contributions of the

classical and quantum effects, respectively. When the 1d-QCP starts from the homoge-

neous state, the transition curve between the absorbing and active phases is composed

of two parts: a quantum region [0,κ∗] and the classical DP region [κ∗,κc]. In the quan-

tum region, the critical exponent α , which is associated with the density of active sites

n(t), decreases continuously as κ is increased from the quantum value to the classical

DP value as presented in Table II. Thus, the crossover from a quantum to a classical

behavior proceeds gradually. When the 1d-QCP starts from the heterogeneous state,

such an anomalous crossover does not occur. We find a continuous transition at κ = 0

in the DP class. For the 2d-QCP, a similar continuous transition occurs, which is in

contrast to the expectation from the functional renormalization group approach [26].

It is interesting to note that in the mean-field solution, the transition in the region near

κ = 0 is discontinuous. This discontinuous transition is changed to a continuous tran-

sition with a continuously varying exponent, provided that the 1d-QCP starts from the
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homogeneous state.

Based on our result, the 1D-QDP universality class has the same critical exponents

with the classical DP class except for the critical exponent α , with the relation αTDP =

2αDP, and the rapidity-reversal symmetry of DP class is broken. This is reminiscent of

the mean-field picture that MF-DP class and MF-TDP class have the only difference

in the critical exponent α , with the relation αTDP = 2αDP. Thus we shall compare the

low-dimensional TDP and DP classes. In one dimension, the 1D-QDP class is different

with the 1D-TDP class, which does not exist because the tricritical point vanishes. On

the other hand, in two dimensions, the 2D-QCP class does not exist, and the 2D-TDP

class exists.

The quantum coherent effect for mean-field limit seems to be irrelevant as in the

2d-QCP because the quantum fluctuations are stronger at the lower dimensions. If this

scenario is valid, the continuous transition with DP class should appear for all tran-

sition line in mean-field limit. Hence the mean-field critical behavior using Keldysh

formalism [147] may be examined.

The NN approach we used was applied to the dataset obtained by the QJMC simu-

lations. We think that this approach can be applied directly to snapshots obtained in the

cold Rydberg experiments. Furthermore, our approach will be used in near future for

other dissipative systems where a transition point is hardly determined. Examples in-

clude dissipative transverse-field Ising model, dissipative XYZ model, and dissipative

anisotropic Heisenberg model.
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Figure 6.7: Estimates of the critical exponent α from the homogeneous state for κ ≥ 0.
Plot of n(t) as a function of t for different κ in the range κ ∈ [0,0.6] in steps of 0.2
using the QJMC with N = 20 for (a) and tensor network method with N = 80 and
bond dimension χ = 1024 for (b). The lower (upper) solid line is a guideline with
slope −0.32 (−0.16). Scaling plots of n(t)tα versus tN−z with the classical parameter
(c) κ = 0.0, (d) κ = 0.2, (e) κ = 0.4, and (f) κ = 0.58. The critical exponents are taken
as z = 1.55 and α = 0.32 for (c), α = 0.24 for (d), α = 0.20 for (e), and α = 0.16 for
(f).
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Figure 6.8: Estimates of the critical exponent α and ν‖ for the 2d-QCP. Initial state
starts from the homogeneous state. (a) Plot of n(t) as a function of t for different
system sizes when κ = 0, which shows that n(t) ∼ t−α , with α = 0.45. The inset
shows the scaling plot of n(t)tα versus tN−z for α = 0.32 and z = 1.76. Caption: Data
points collapse well onto a single curve for ωc = 0.94, α = 0.45, and ν‖ = 1.30. The
units of control parameter is given as γ .
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Figure 6.9: Estimates of the critical exponents of the 2d-QCP starting from a single
active site. (a) Plot of ρd(t) versus t, which behaves as ρd(t)∼ t−δ−δ ′ . (b) Scaling plot
of ρd(t)tδ+δ ′ versus tN−z for δ +δ ′ = 0.90 and z = 1.76. (a) Scaling plot of Na(t)t−η

versus tN−z for η = 0.23 and z = 1.76. (b) Scaling plot of P(t)tδ ′ versus tN−z for
δ ′ = 0.45 and z = 1.76.
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Chapter 7

Phase transitions in the infinite dimensional dissi-

pative quantum systems

Major contents of this chapter are largely based on Ref. [37].

7.1 Introduction

The study of collective behavior of dissipative quantum many-body systems has been

an active field in both theoretically and experimentally [75, 105–107, 109–122]. The

mutual competition between coherent Hamiltonian and incoherent dissipation dynam-

ics can make a novel physical phenomena, such as time crystals [148, 149], zero-

entropy entangled states [150, 151], driven-dissipative strong correlations [152, 153],

and dissipative phase transitions in the nonequilibrium steady-state [5,6,8–11] includ-

ing novel universal behavior [17,36]. However, the solid understanding of the analyti-

cal approaches to these systems is still limited due to the lack of a concept analogous

to the partition function in equilibrium systems.

Nevertheless, the various theoretical approaches have been developed, including

the fluctuationless mean-field theory, semi-classical approach, and Keldysh formal-

ism. Furthermore, the field-theoretical approaches including the semi-classical ap-

proach and Keldysh formalism are used to obtain the low-dimensional physics using

ε-expansion or functional renormalization group [6, 26, 147]. However, the theoreti-

cal predictions from each approach are qualitatively different [154]. For instance, in

the dissipative transverse Ising (DTI) model, one difference is that the second-order
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transition is replaced by a first-order transition for large dissipation using Keldysh for-

malism instead of fluctuationless mean-field theory [154]. Thus, one should perform

the higher dimensional simulations to check the validity of the mean-field theory; how-

ever, numerical methods including quantum jump Monte Carlo simulation [33], tensor

network [34,35] and its variants [155–157] are not viable in higher (above two) dimen-

sions because of the computational complexity, with the exponential growth of Hilbert

space as system size increases.

Here, we implement a method [158] exploiting site-permutational symmetry of

fully-connected graph to obtain the exact numerical solution in the infinite-dimensional

dissipative quantum systems. By reducing the computational complexity to O(N3)

from the usual O(22N), we perform the simulation of system size up to N ∼ 1000 and

resolve some of the unsolved disputes in dissipative quantum systems. We consider

the the DTI model, driven-dissipative XY model, and quantum contact process (QCP),

which have attracted much interest due to the relevance to the Rydberg atomic exper-

iments [24, 159, 160]. When analytical approaches such as fluctuationless mean-field

theory, semi-classical mean-field theory, and Keldysh formalism are implemented in

these models, they result in predictions that are contradictory to each other. We obtain

the phase diagram and discuss the types of transitions. Furthermore, we perform the

finite-size scaling, which hasn’t been viable due to the the complexity of the infinite-

dimensional quantum system, and obtain critical exponents. We find that the transition

lines and the types of the phase transitions correspond to the fluctuationless mean-

field in each models. The DTI model exhibits a continuous phase transition for the

entire parameter space, and the driven-dissipative XY model shows a discontinuous

phase transition, contrary to the results from Keldysh formalism. The phase transitions

of QCP shows that the transition line and universality class correspond to the semi-

classical approach. However, we observe a crossover region where critical exponents

continuously vary, which is not predicted by existing theoretical methods. Similar phe-

nomenon was observed in the one-dimensional QCP [36].
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7.2 Method

The time evolution of the open quantum system is described by the Lindblad equation,

which consists of the Hamiltonian and dissipative terms:

∂t ρ̂ =−i
[
ĤS, ρ̂

]
+

N∑
`=1

[
L̂`ρ̂L̂†

` −
1
2

{
L̂†
` L̂`, ρ̂

}]
. (7.1)

Qubit systems with fully-connected lattice are symmetric under any permutational of

site indices; that is, the elements of the density matrix ρvw = ρPα (v)Pα (w) where v and w

denote one of the 2N configurations of N spins, and P denotes a permutation operator. If

the dynamical equation and the initial density matrix both have site-permutation sym-

metry, the density matrix remains site-permutation symmetric. Here, we implement a

method [158] to exploit this property to efficiently obtain solutions to the Lindblad

equations of fully-connected qubit systems. Using the symmetry in two-level systems

in the fully-connected lattice, the elements |v〉〈w| of the density matrix can be classi-

fied by (n1,n2,s), where n1 is the number of ones in v, n2 is the number of ones in w,

and s is the number of sites where v and w are both one. Then, 0 ≤ n1,n2,s ≤ N, and

we can write the density matrix as

ρ̂ =
∑

n1,n2,s

An1,n2,s|n1,s〉〈n2,s| , (7.2)

where An1,n2,s = 〈n1,s| ρ̂ |n2,s〉 is the 3-rank tensor whose components are a sum of

elements of ρ̂ . For convenience, we introduce the Liouvillian superoperator L because

the Lindblad equation in Eq. (7.1) is linear in ρ:

∂t ρ̂ = L ρ̂ . (7.3)
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Figure 7.1: (a) Phase diagram of the fully-connected DTI in the parameter space (∆,
J). Continuous transitions (solid line) occur in entire parameter regime. (b) Histogram
of order parameter in steady states as a function of J at ∆ = 0.2. Continuous transition
occurs with Z2 symmetry. System size is taken as N = 128.

Then, the time dynamics of Eq. (7.2) can be represented as the Liouvillian superoper-

ator, given by

∑
n1,n2,s

∂tAn1,n2,s|n1,s〉〈n2,s|=
∑

n1,n2,s

L An1,n2,s|n1,s〉〈n2,s| . (7.4)

Thus, the computational complexity of O(N3) suffices instead of the usual complexity

of O(22N). Furthermore, we can exploit the hermiticity of the density matrix and re-

duce the computational cost by half. This approach enables us to obtain the numerical

solution in the systems beyond the scale otherwise viable.

7.3 Results

7.3.1 Dissipative transverse Ising model

We now consider the dissipative transverse Ising model [161–164], which has received

considerable interest because of its experimental realization with ultracold Rydberg
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Figure 7.2: (a) Plot of |σ z| as a function of J−Jc at ∆ = 0.2 for different system sizes,
which shows that |σ z| ∼ (J− Jc)

β for β = 0.5. (b) Scaling plot of the rescaled order
parameter |σ z|Nβ/ν̄ versus (J− Jc)N1/ν̄ . The data are well collapsed onto a single
curve with β = 0.5 and ν̄ = 1.75.

atoms [159, 160]. The Hamiltonian ĤS is expressed as

ĤS =−
J

N−1

∑
6̀=m

σ̂
z
` σ̂

z
m +∆

∑
`

σ̂
x
` , (7.5)

where J denotes the interaction strength of ferromagnetic Ising interaction and ∆ in-

dicates strength of a transverse field. The Lindblad operators of decay is given by

L̂` =
√

Γσ̂
x−
` =

√
Γ

σ̂
y
`−iσ̂ z

`
2 , with the decay rate Γ. In the absence of the Lindblad oper-

ator, the ground state of Eq. (7.5) was thoroughly investigated to exhibit to a quantum

phase transition [165] from a ferromagnetic phase (J � ∆) to a paramagnetic phase

(J� ∆). Note that the Hamiltonian exhibits Z2, which is symmetric under the trans-

formation σ̂ z →−σ̂ z. For the open quantum systems, Z2 symmetry can be broken if

the Lindblad operator is given by L̂` ∼ σ̂
−
` , which can be seen in previous studies of

dissipative Rydberg gases [161,166,167]. Here, the model still exhibits a Z2 symmetry,

which is symmetric under the transformation (σ̂ x, σ̂ y, σ̂ z)→ (σ̂ x,−σ̂ y,−σ̂ z).

Recently, it was conjectured that the continuous transition can break down, and

discontinuous transition can occur for strong dissipation regime both analytically [154]

based on the Keldysh formalism and numerically [168] using a variational approach.
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Specifically, the discontinuous transition occurs for ∆/Γ < 0.5 [154] and for ∆/J <

0.22 [168]. Here, we consider the former case by setting Γ = 1 and the latter case will

be presented in the Appendix.

To verify the mean-field behavior, we use our exact numerical solution approach

to DTI model. The phase diagram in the parameter space (∆,J) is shown in Fig. 7.1(a),

and the order parameter curve at ∆ = 0.2 is shown in Fig. 7.1(b). It seems to be contin-

uous, and we perform the finite-size scaling for various ∆. When the transition type is

continuous, then the critical behavior is shown and the critical exponent can be mea-

sured. In Fig. 7.2, we perform the finite-size scaling at ∆ = 0.2 and obtain the critical

exponents β = 0.50± 0.01 and ν̄ = dcν = 1.75± 0.01. Thus, we conclude that the

transition type of DTI model in all parameter spaces is continuous. Furthermore, we

find that the transition type and line are exactly the same as the result of the fluctuation-

less mean-field approach instead of Keldysh formalism. The fluctuationless mean-field

equation and the corresponding transition line are shown in the Appendix.

Even though the dissipative transverse Ising model has the Z2 symmetry, its univer-

sality class does not belong to the quantum Ising universality, where β = 0.5, ν = 0.5,

and dc = 3. It is unconventional, so further investigation is needed in future work to

resolve this inconsistency.

7.3.2 Driven-dissipative XY model

The Hamiltonian HS of the driven-dissipative XY model is expressed as

ĤS =−
J

N−1

∑
6̀=m

σ̂ x
` σ̂ x

m + σ̂
y
` σ̂

y
m

2
+Ω

∑
`

σ̂
x
` +∆

∑
`

σ̂
z
` ,

where J denotes the interaction strength, and Ω and ∆ denotes the field in x- and z-axis

respectively. The dissipative dynamics at each site is given by the Lindblad operator

L̂` =
√

Γσ̂
−
` . Without coherent drive denoted by Ω in the Hamiltonian, the system

approaches trivial state where all spins are in |↓〉.
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Figure 7.3: (a) The fluctuationless mean-field theoretical prediction of the order pa-
rameter

∑
` σ̂

z
` along the Ω-axis with (J,∆) = (4,0.5). (b) Probability distribution

of the observable
∑

` σ̂
z
` of the driven-dissipative XY model with N = 128 and

(J,∆) = (4,0.5). The diagram shows a discontinuous phase transition with bistabil-
ity at Ω/Γ' 1.4 as expected by the fluctuationless mean-field theory.

The fluctuationless mean-field theory predicts a first-order phase transition in cer-

tain region. The full mean-field phase diagram has a rich structure, we are particu-

larly interested in the vicinity of the first-order phase transition predicted by the the-

ory. When parameters are fixed (J,∆)/Γ = (4,0.5), the theory predicts a first-order

phase transition with bistable interval along the Ω-axis. The fluctuationless mean-field

theoretical predictions are illustrated in Fig. 7.3(a) (See the Appendix for detailed

calculations). However, the Keldysh formalism indicates the absence of phase tran-

sition [154].

To resolve the disparity between the two predictions, we use our method to the

model along the Ω-axis with (J,∆)/Γ = (4,0.5). We illustrate the probability distribu-

tion of the observable
∑

` σ̂
z
` in Fig. 7.3. A first-order phase transition clearly manifests

itself near Ω = 1.4 with bistability in the vicinity of the phase transition.

7.3.3 Quantum contact process

We shall here consider the QCP [25,26,31,92,93,123,124], which is the paradigmatic

model showing absorbing state phase transitions in open quantum systems. Recently,
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QCP has received considerable interest because of its potential realization with ultra-

cold Rydberg atoms based on the antiblocakde effect [24], and the universal behavior

of one dimensional QCP [36,92,93,123] was revealed that the quantum coherent effect

changes DP universality to quantum DP universality. The Hamiltonian ĤS contains the

coherent terms for branching and coagulation, which is given by

ĤS =
ω

N−1

∑
m 6=`

n̂m(σ̂
+
` + σ̂

−
` ) , (7.6)

and the Lindblad operators of decay, branching, and coagulation are given by

L̂(d)
` =

√
γσ̂
−
` , L̂(b)

m` =
√

κ n̂mσ̂
+
` , L̂(c)

m` =
√

κ n̂mσ̂
−
` , (7.7)

respectively. Here, σ̂
±
` = (σ̂ x

` ± iσ̂ y
` )/2. Because n̂` is the number operator of the active

state, n̂ = |↑〉〈↑|, the composite operator n̂mσ̂
+
` or n̂mσ̂

−
` with ` 6= m means that the

active state at site m activates or deactivates the state at `, representing the branching

and coagulation processes, as seen in Eq. (7.6) and L̂(b)
` and L̂(c)

` in Eq. (7.7). Instead,

L̂(d)
` in Eq. (7.7) denotes the decay dynamics of the active state at `. Therefore, if there

is no active state, no further dynamics occurs, implying an absorbing state.

A recent result based on the semi-classical mean-field solution [26, 31] showed

that the QCP exhibits a continuous (discontinuous) phase transition when κ is large

(small). Thus, a tricritical point (TCP) exists, as shown in Fig. 7.4(a). The continuous

transition belongs to the DP universality class, and the TCP belongs to the tricritical

DP class [32,54,55]. Two results are based on the Martin-Siggia-Rose-Janssen-de Do-

minicis field theory; however, transition lines are slightly different. The transition line

of Ref. [31] corresponds to the flucutationless mean-field theory, while the transition

line of Ref. [26] bends due to the fluctuation.

Using the permutational symmetry, we can obtain the exact numerical solution of

the Lindblad master equation up to N ∼ 1000. We obtain the phase diagram of the

mean-field QCP in the parameter space (κ,ω). Along the transition line, we measure
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Figure 7.4: (a) Phase diagram of the fully-connected QCP in the parameter space (κ ,
ω). Discontinuous (dashed curve) and continuous transitions (solid and dotted line)
occur, and they meet at a tricritical point. Continuous transitions in the region [κ∗,κc];
however, in the interval [0,ω∗], the exponents α and z varies continuously as ω is
increased for the TDP values. (b) Histogram of the densities of active sites in steady
states as a function of ω at κ = 0.0. (c) Histogram at ω = 1.8 of (b), which shows the
bimodal distribution. (d) Histogram of the densities of active sites in steady states as a
function of κ at ω = 1.0. System size is taken as N = 256.
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Figure 7.5: Estimates of the critical exponents of the MF-QCP using the exact numer-
ical solution of Lindblad equation. Plot of n(t) as a function of t for different ω in
the range ω ∈ [0,1.0]. Plot of n(t) as a function of t for different system sizes, which
shows that n(t)∼ t−α , (a) for ω = 0 with α = 1.0, (b) for ω = 0.6 with α = 0.92, (c)
for ω = 0.8 with α = 0.70, and (d) for ω = 1.0 with α = 0.50. Inset: Scaling plots of
n(t)tα versus tN−z.

the various observables depending on the initial conditions. Here, we consider a ho-

mogeneous initial state in which the entire system is occupied by active sites at t = 0,

which is expressed as ρ̂(0) = |↑ · · · ↑〉〈↑ · · · ↑|. The observables related an initial state

in which a single active seed is present at ` = 0 (and the remaining sites are inac-

tive) will be presented in detail in the Appendix. From the homogeneous initial state,

we measure the density n(t) of active sites at time t. This quantity is formulated as

n(t) = (
∑

` Tr[ρ̂(t)n̂`])/N. We find that n(t) exhibits power-law decay as n(t) ∼ t−α

with exponent α = 1.00±0.02 at ω = 0.0 [Fig. 7.5(a)] and α = 0.50±0.02 at ω = 1.0
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Table 7.1: Critical exponent α for different κ values.

ω α (Exact numerical solution)

1.0 0.50±0.02

0.9 0.61±0.02

0.8 0.70±0.02

0.7 0.81±0.02

0.6 0.92±0.02

≤ 0.53 MF DP values

Figure 7.6: Comparison between exact numerical solution and quantum jump Monte
Carlo simulation for the QCP model for N = 16, 20, and 24. The lines show the results
of an exact numerical solution of the Lindblad equation and the symbols show the
results of quantum jump Monte Carlo simulations.

[Fig. 7.5(d)]. This value is consistent with the result obtained by applying the semi-

classical approach; however, we find there exists the crossover region where the expo-

nent α is continuously varying. To be concrete, we find that the value of α decreases
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continuously from 1.0 for ω = 0.53 to α = 0.5 for ω = 1.00 (Table E.1). These results

suggest that α increases continuously as ω is decreased and reaches the DP value at

κ∗ ≈ 0.53.

7.4 Comparison with quantum jump Monte Carlo simula-

tion

We perform the quantum jump Monte Carlo simulation to compare the results with our

exact numerical approach for system size N = 16, 20, and 24 for QCP. Here, we focus

on the power-law behavior at a tricritical point (κ,ω) = (1,1). In Fig. 7.6, we compare

the exact numerical solution for the QCP model for N = 16, 20, and 24 with quantum

jump Monte Carlo simulation. We find the two methods are in good agreement.

7.5 Summary and Conclusions

We have implemented an exact numerical method in infinite-dimensional qubit sys-

tems, in some of which various theoretical methods make predictions that are contra-

dictory to each other. In addition, we observe a crossover region which all the existing

theoretical methods fail to predict. Using the FSS, which hasn’t been viable due to

the complexity of the numerical approach to infinite-dimensional systems, we confirm

that the universality class and verify the universality class obtained from the analytical

approach including Keldysh formalism, semi-classical approach, and fluctuationless

mean-field approach. In addition, we compare the results obtained from the quantum

jump Monte Carlo simulation in small qubit sizes.

For the DTI model, we find that the discontinuous phase transition does not occur

in all transition line. In Keldysh formalism, it was conjectured that the discontinu-

ous transition occurs for the strong dissipation regime [154]. Instead, the transition

line and type of the transition corresponds to the flucutationless mean-field results.

However, our result shows that the universality class does not belong to the quantum
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Ising universality class, so further investigation is needed in future work to resolve

this inconsistency. For driven-dissipative XY model, we find that a discontinous phase

transition occurs near the parameter predicted by the fluctuationless mean-field theory,

as opposed to the prediction of the Keldysh formalism that there is no phase transi-

tion in the model. When one applies to the Keldysh formalism on those systems, it is

necessary to map spins to hard-core boson; for instance, a hard-core bosonization via

a large on-site potential, which might not result in a valid qubit system in the infinite

potential limit.

For the QCP model, a previous result based on the semi-classical mean-field solu-

tion showed that the continuous transition belongs to the DP universality class, and the

TCP belongs to the tricritical DP class (See Fig. 7.4). According to our approach, we

find that transition lines are exactly the same with Ref. [31], and there is a crossover re-

gion along which the exponent α (which is associated with the density of active sites)

decreases continuously from a tricritical directed percolation (DP) to the DP value,

which is reminiscent of the one-dimensional QCP. In this regard, we shall compare the

universal behavior between MF-QCP and one-dimensional QCP. Based on the exact

numerical approach, we find there exists a crossover region of MF-QCP from the DP

class to the TDP class with a tricritical point. The only different value of critical expo-

nent between MF-TDP and MF-DP is the exponent α , and the scaling relation α = 2δ ′

holds. This is analogous to the one-dimensional case between at quantum DP class at

quantum axis and DP class. Hence we conclude that the tricritical point at (1,1) at MF

limit moves on the quantum axis with κ = 0 in one dimension.
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Chapter 8

Conclusion

In this dissertation, we have studied the nonequilibrium phase transitions in open quan-

tum systems. The dissipative phase transition is one of the most interesting phenomena

because it originates from competition between the quantum and classical fluctuations.

Among these models, the quantum contact process (QCP) is the prototypical model to

capture these physics because the DP class of its classical limit is well-studied and of

the relevance of ultracold Rydberg experiments.

This dissertation has covered the QCP with long-range interactions and ordinary

QCP. We shall conclude by discussing the each model focused on the question raised

in Introduction that the novel universality class can be identified in open quantum

many-body systems. Firstly, we considered the long-range QCP, where the branching

and coagulation processes are allowed not only for the nearest-neighbor pairs but also

for long-distance pairs, coherently and incoherently. Using the semi-classical field-

theoretic approach to the quantum Langevin equations, we found a new universality

class called “long-range tricritical DP (LTDP) class”, which was found to be the clas-

sical universality. Thus, the quantum process is effectively reduced as the classical

higher-order interaction in mean-field theory. Since it had not been studied yet, we

deeply studied the low-dimensional physics of this universality class. Considering the

long-range tricritical contact process belonging to the LTDP class, we numerically ob-

tained a set of critical exponents in the LTDP class and determine the interval of σ for

the LTDP class. Finally, we constructed a diagram of universality classes in the space

(d, σ ).
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Since we analytically determine the mean-field universality class, interest naturally

turned to lower-dimensional cases. Thus, we considered 1d-QCP and 2d-QCP using

quantum simulations such as the quantum jump Monte Carlo (QJMC) simulation and

the tensor network methods. For 1d, we found an quantum critical region [0,κ∗] where

the quantum fluctuations play a role in universal behavior. Specifically, when the QCP

starts from a homogeneous state with all active sites, there exists a critical line in

the region 0 ≤ κ < κ∗, along which the exponent α associated with the density of

active sites decreases continuously from a quantum to the classical directed percolation

(DP) value. This behavior implies that the quantum coherent effect still remains to

some extent in the region near κ = 0. This anomalous crossover behavior allows us

to measure the display between the quantum DP and classical DP effect using the

Rydberg atom experiment. For 2d, the anomalous crossover behavior does not occur

and the classical DP behavior appears in the entire region of κ ≥ 0 regardless of initial

configurations. The neural network machine learning technique is used to identify the

critical line and to determine the correlation length exponent. Numerical simulations

using the quantum jump Monte Carlo technique and the tensor network method are

performed to determine all the other critical exponents of the QCP. Thus, we found the

novel universality class called “quantum directed percolation (QDP) universality” in

one dimension.

Lastly, we investigate the mean-field dissipative quantum systems using the per-

mutational symmetry of fully-connected graph. It is based on the permutational sym-

metry, which is symmetric under any exchange of site indices. Crucially, our approach

allows us to perform the simulation with the complexity O(N3). Using this method, we

unveil the mean-field behavior of the dissipative transverse Ising (DTI) model, driven-

dissipative XY model, and quantum contact process. We find that the transition line

and type of phase transition correspond to the fluctuationless mean-field for all mod-

els. Specifically, we find that the DTI model exhibits a continuous phase transition for

the entire parameter space, and the driven-dissipative XY model shows a discontinuous
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phase transition, contrary to the results from Keldysh formalism. Instead, those corre-

spond to the fluctuationless MF approach. The phase transitions of QCP shows that the

transition line and universality class correspond to the semi-classical approach; how-

ever, we discover a crossover region analogous to the one-dimensional QCP, which is

not predicted by theoretical methods.

In conclusion, we have revealed that the novel universality class and crossover

phenomena in open quantum many-body systems, which originates from the quantum

fluctuations. However, there are many works to do such as the theoretical approach to

the QDP and experimental realization. Furthermore, it would be interesting that the

open quantum many-body systems are simulated using the quantum computers. We

hope further experiments and simulations could confirm the universality class whose

quantum coherent process is relevant.
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Appendix A

Appendix of chapter 1

A.1 Realization of classical contact process by Rydberg atomic

experiment

The critical behavior of classical CP can be realized using Rydberg atomic experiment.

Here we show that the transition rate κ of branching and coagulation processes in

classical limit can be obtained in terms of the experimental parameters used in Rydberg

atomic system.

A.1.1 Lindblad equation for Rydberg gases

To describe the Rydberg gases in open quantum systems, we employ the Lindblad

equation as follows:

∂t ρ̂ =−i
[
Ĥ0 + ĤΩ, ρ̂

]
+

2∑
i=1

D(i)(ρ̂) , (A.1)

where we have split HR into two parts as

Ĥ0 = ∆

N∑
`

n̂`+
∑
6̀=m

V`m

2
n̂`n̂m, and ĤΩ = Ω

N∑
`

σ̂
x
` ,
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and the Lindblad dissipator D(i) is given by

D(i)(ρ̂) =
∑
`

(
L̂(i)
` ρ̂L̂(i)†

` −
1
2

{
L̂(i)†
` L̂(i)

` , ρ̂
})

. (A.2)

Here, the Lindblad operators defined on each site L̂(1)
` and L̂(2)

` stand for the decaying

from |↑〉 to |↓〉 with zero-temperature heat bath and the dephasing processes, respec-

tively, where the detail forms are given by

L̂(1)
` =

√
γσ̂
−
` and L̂(2)

` =
√

Γn̂`. (A.3)

Using the representation of operator with the spin configurations as basis such as

ρab ≡ 〈a|ρ̂|b〉, where a and b denote the one of 2N configurations of N spins, i.e.,

|a〉 =|↓↑ · · · ↓〉, one can evaluate each term in the r.h.s. of Eq. (A.1) as follows: Since

Ĥ0 is the diagonal matrix for the basis, the first term reads

〈a|[Ĥ0, ρ̂]|b〉=
[
∆

∑
`

(〈a|n̂`|a〉−〈b|n̂`|b〉)

+
∑
6̀=m

V`m

2
(〈a|n̂`n̂m|a〉−〈b|n̂`n̂m|b〉)

]
ρab,

=
(
〈a|Ĥ0|a〉−〈b|Ĥ0|b〉

)
ρab, (A.4)

which becomes zero when a = b. On the other hand, ĤΩ yields the transition between

the states by flipping a single spin, then the second term in Eq. (A.1) can be written as

〈a|[ĤΩ, ρ̂]|b〉= Ω

∑
`

∑
a′

[
〈a|σ̂ x

` |a′〉ρa′b−〈a′|σ̂ x
` |b〉ρaa′

]
, (A.5)

where the diagonal term a = b is given by

〈a|[ĤΩ, ρ̂]|a〉= Ω

∑
`

∑
a′

[
〈a|σ̂ x

` |a′〉ρa′a−〈a′|σ̂ x
` |a〉ρaa′

]
. (A.6)
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Note that the diagonal part Eq. (A.6) contains only off-diagonal contributions of den-

sity matrix because 〈a|σ̂±` |a〉 = 0, which will be used for deriving the rate equation.

Similarly, we get the representations of Lindblad operators; for the decay operator

〈a|D(1)(ρ̂)|b〉= γ

∑
`

∑
a′b′
〈a|σ̂−` |a

′〉〈b|σ̂−` |b
′〉∗ρa′b′

− γ

2

∑
`

(〈a|n̂`|a〉+ 〈b|n̂`|b〉)ρab , (A.7)

where the diagonal term a = b is given by

〈a|D(1)(ρ̂)|a〉= γ

∑
`

∑
a′

[
|〈a|σ̂−` |a

′〉|2ρa′a′−|〈a′|σ̂−` |a〉|
2
ρaa

]
. (A.8)

For the dephasing operator,

〈a|D(2)(ρ̂)|b〉= Γ

∑
`

(
〈a|n̂`|a〉〈b|n̂`|b〉−

〈a|n̂`|a〉
2

− 〈b|n̂`|b〉
2

)
ρab,

=−Γ

2

∑
`

|〈a|n̂`|a〉−〈b|n̂`|b〉|ρab , (A.9)

which becomes zero when a = b. If the Lindblad equation consists of only this dephas-

ing dissipator, the density operator ρab in long time limit becomes the diagonal matrix,

which is why the D(2) is called the dephasing operator. In the limit of Γ� Ω,γ , it

is known that the coherent dynamics can be neglected so that the Lindblad equation

Eq. (A.1) is effectively reduced to the classical rate equation [23]. In what follows, we

will briefly show the procedure.

A.1.2 Derivation of transition rate in classical limit

For convenience, we introduce the super operator [169], by mapping the density oper-

ator to the density vector, ρab→ ρα , where a and b mean the one of spin configurations

as defined before, and α is the corresponding vector index. Then we rewrite the Lind-
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blad equation Eq. (A.1) in terms of the vectorized density operator ~ρ

∂t~ρ =−iĤ ~ρ, (A.10)

where the super operator Ĥ defined in the 4N×4N complex space is given by

Hαβ ≡ i
∂ (∂tρα)

∂ρβ

(A.11)

because Eq. (A.1) is the linear equation of ρα . We decompose the density vector to two

parts as ~ρ =~µ⊕~ν , where ~µ (belongs to the 2N dimensional space M ) and~ν (belongs

to the 4N−2N dimensional space N ) are defined by arranging the ρab as below:

~µ = (ρ0,ρ1, · · · ,ρα , · · · ,ρ2N−1︸ ︷︷ ︸
ρα=ρaa

)T ∈M ,

~ν = (ρ2N ,ρ2N+1, · · · ,ρα , · · ·ρ4N−1︸ ︷︷ ︸
ρα=ρa 6=b

)T ∈N . (A.12)

Here, the first 2N components of vectors correspond to the diagonal components of

density matrix, and the remainders are the off-diagonal terms of density matrix. From

these decomposed vectors and Eqs (A.4)-(A.9), Ĥ can be decomposed using the

block matrix

Ĥ =

 Ĥ
(1)

1 Ĥ Ω
1

Ĥ Ω
2 Ĥ 0 +Ĥ Ω

3 +Ĥ
(1)

2 +Ĥ (2)

 , (A.13)

where the upper left (lower right) part of the matrix is mapping to M →M (N →

N ), and the upper right (lower left) is mapping to M →N (N →M ). In addition,

Ĥ (1) = Ĥ
(1)

1 +Ĥ
(1)

2 is separable as the two parts Ĥ
(1)

1 : M →M and Ĥ
(1)

2 : N →

N . Likewise, Ĥ Ω is separable as the three parts as Ĥ Ω
1 : M →N , Ĥ Ω

2 : N →M ,

and Ĥ Ω
3 : N →N . Ĥ Ω

1 and Ĥ Ω
2 are a switching operator between spaces of M

and N by flipping one single spin. The components for α = ab of the block matrix in
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Eq. (A.13) are defined as below.

H 0
αα =

∂
(
[ĤΩ, ρ̂]

)
α

∂ρα

= 〈a|Ĥ0|a〉−〈b|Ĥ0|b〉, (A.14)

H
(2)

αα = i
∂
(
D(2)(ρ̂)

)
α

∂ρα

=− iΓ
2

∑
`

|〈a|n̂`|a〉−〈b|n̂`|b〉| , (A.15)

H Ω

1 αβ
=

∂
(
[ĤΩ, ρ̂]

)
α

∂ρβ

= Ω

∑
`

∑
a′

[
〈a|σ̂ x

` |a′〉δβ ,a′a−〈a′|σ̂ x
` |a〉δβ ,aa′

]
, (A.16)

H Ω

2 αβ
=

∂
(
[ĤΩ, ρ̂]

)
α

∂ρβ

= Ω

∑
`

[
〈a|σ̂ x

` |b〉δβ ,bb−〈a|σ̂ x
` |b〉δβ ,aa

]
, (A.17)

H
(1)

1 αβ
= i

∂
(
D(1)(ρ̂)

)
α

∂ρβ

= iγ
∑
`

∑
a′

[
|〈a|σ̂−` |a

′〉|2δβ ,a′a′−|〈a′|σ̂−` |a〉|
2
δβ ,aa

]
, (A.18)

where each (·)
α

stands for the matrix element defined in Eqs. (A.4)-(A.9), correspond-

ing to the vector index α .

Consequently, one can rewrite Eq. (A.10) in terms of ~µ and~ν ,

∂t~µ =−iĤ (1)
1 ~µ− iĤ Ω

1 ~ν , (A.19)

∂t~ν =−iĤ Ω
2 ~µ− i

(
Ĥ 0 +Ĥ Ω

3 +Ĥ
(1)

2 +Ĥ (2)
)
~ν . (A.20)

In the limit of the strong dephasing, where Ĥ (2) may dominate the off-diagonal

dynamics in Eq. (A.20), approximately the solution of Eq. (A.20) becomes an expo-

nentially decaying function in time with a time scale of 1/Γ (∆ is also the large param-

eter, but Ĥ 0 just induces oscillation). Therefore, the full dynamics can be reduced to

the diagonal dynamics of ~µ effectively in the slower time scale than 1/Γ. Inserting the
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solution of Eq. (A.20), given by

~ν(t) = e−i
(
Ĥ 0+Ĥ Ω

3 +Ĥ
(1)

2 +Ĥ (2)
)

t
~ν(0)

− i
∫ t

0
dt ′ e−i

(
Ĥ 0+Ĥ Ω

3 +Ĥ
(1)

2 +Ĥ (2)
)
(t−t ′)

Ĥ Ω
2 ~µ(t ′), (A.21)

into the Eq. (A.19) with~ν(0) = 0, we obtain

∂t~µ =−iĤ (1)
1 ~µ(t)

−
∫ t

0
dt ′ Ĥ Ω

1 e−i
(
Ĥ 0+Ĥ Ω

3 +Ĥ
(1)

2 +Ĥ (2)
)
(t−t ′)

Ĥ Ω
2 ~µ(t ′), (A.22)

Using the fact Γ,∆� γ,Ω, we can expand the exponential function about the small

parameter using the Zassenhaus formula [170], which then becomes

∂t~µ =−iĤ (1)
1 ~µ(t)−

∫ t

0
dt ′ Ĥ Ω

1 e−i(Ĥ 0+Ĥ (2))(t−t ′)Ĥ Ω
2 ~µ(t ′)

+O(Ω2
γ,Ω3), (A.23)

We remark again that the time scale for dynamics of ~µ is much larger than 1/Γ, which

leads to the replacement ~µ(t ′)→ ~µ(t) in the integrand of Eq. (A.23), similarly to the

Markov approximation [27]. Also, let the lower limit of the integral go to negative

infinity due to the fast decaying of the exponential function. Then, rearranging the

time integral of Eq. (A.23) as (t− t ′)→ t ′, we obtain

∂t~µ ≈−iĤ (1)
1 ~µ(t)−

∫
∞

0
dt ′ Ĥ Ω

1 e−i(Ĥ 0+Ĥ (2))t ′Ĥ Ω
2 ~µ(t) . (A.24)

Now, one can see that the slow dynamics Eq. (A.24) is given only in terms of µα ,

meaning that it can be rewritten with the diagonal elements ρaa of the density operator.

The first term in the r.h.s. of Eq. (A.24) is given by the diagonal element of Eq. (A.18),
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which is only composed of diagonal elements µα or ρaa as below.

(
− iĤ (1)

1 ~µ(t)
)

α

= γ

∑
`

∑
b

[
|〈a|σ̂−` |b〉|

2
ρbb−|〈b|σ̂−` |a〉|

2
ρaa

]
,

Next, since Ĥ 0 and Ĥ (2) are diagonal matrices, the αth component of second term

is given by

(
−
∫

∞

0
dt ′ Ĥ Ω

1 e−i(Ĥ 0+Ĥ (2))t ′Ĥ Ω
2 ~µ

)
α

=−
∑
β ,α ′

H Ω

1 αβ
H Ω

2 βα ′µα ′×
∫

∞

0
dt ′e−i

(
H 0

ββ
+H

(2)
ββ

)
t ′
. (A.25)

Using Eqs. (A.16) and (A.17), one can rewrite Eq. (A.25) by changing α → aa

Ω
2
∑

b

(ρbb−ρaa)
∑
`

|〈a|σ̂ x
` |b〉|

2

×
∫

∞

0
dt ′
(

e−i
(
H 0

ab,ab+H
(2)

ab,ab

)
t ′
+ e−i

(
H 0

ba,ba+H
(2)

ba,ba

)
t ′
)

≡
∑

b

(Λa,bρbb−Λb,aρaa) . (A.26)

where we have used
∑

`,`′
(
〈a|σ̂ x

` |b〉
)(
〈b|σ̂ x

`′ |a〉
)
=
∑

`

∣∣〈a|σ̂ x
` |b〉

∣∣2 which becomes

zero when `, `′ are different. Note that the transition rate Λa,b = Λb,a induced by in-

teraction is non-zero only when the spin configuration b is given by |b〉= |a1〉, where

{|a1〉} is generated from |a〉 by flipping a single spin: for example, if |a〉 = |↑↓↓〉

is given for N = 3, a set {|a1〉} can be defined as {|↓↓↓〉 , |↑↑↓〉 , |↑↓↑〉}. Now, using

H
(2)

aa1,aa1 =−iΓ/2 for any a1, and H 0
aa1,aa1

= 〈a|Ĥ0|a〉−〈a1|Ĥ0|a1〉 we obtain the non-

zero transition rate Λa,a1 in Eq. (A.26) as

Λa,a1 = Ω
2
∫

∞

0
dt ′2e−

Γ

2 t ′ cos
({
〈a|Ĥ0|a〉−〈a1|Ĥ0|a1〉

}
t ′
)

=
ΓΩ2

(Γ/2)2 +
(
〈a|Ĥ0|a〉−〈a1|Ĥ0|a1〉

)2 . (A.27)
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From Eq. (A.7) and (A.26), therefore, one can see that the rate equation Eq. (A.24) up

to the second order is written as

∂tρaa =
∑

b

(Wa,bρbb−Wb,aρaa) , (A.28)

where the transition rate Wa,b reads

Wa,b = γ

∑
`

|〈a|σ̂−` |b〉|
2 +Λa,b (A.29)

A.1.3 Derivation of κ = 4Ω2/Γ

First, we consider only the nearest neighbor interaction, V`m =V0 for the nearest neigh-

bor pair (`,m), otherwise V`m = 0. Defining a` as |a1`〉= σ̂ x
` |a〉, we obtain the transition

rate Λa,a` in Eq. (A.27) as

Λa,a1` =
4Ω2

Γ

1

1+ 4
Γ2

(
∆+ 〈a|P̂̀ |a〉V0

)2 , (A.30)

where P̂̀ denotes the number of the nearest neighbor having the up state of the site `,

that is, P̂̀ ≡
∑

m∈n.n.(`) n̂m. Setting V0 = −∆ and ∆� Γ, one can see that Eq. (A.30)

is approximately zero, except for the case of 〈a|P̂l|a〉 = 1. In the low density limit,

where the number of up spins per site is vanisingly small, n = tr [ρ̂
∑

` n̂`]/N � 1,

configurations having small number of up spins yield a major contribution in ρ̂ . Then

one can assume that 〈a|P̂̀ |a〉 for the major configuration is mostly zero or 1, leading

to the following approximation:

Λa,a` ≈
4Ω2

Γ
〈a|P̂̀ |a〉=

∑
m∈n.n(`)

4Ω2

Γ
〈a|n̂m|a〉 . (A.31)
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Using |a〉= σ̂ x
` |a1`〉 and expanding to general configurations b, the transition rate Λa,b

becomes

Λa,b =
4Ω2

Γ

∑
`

∑
m∈n.n.(`)

(∣∣〈a|n̂mσ̂
+
` |b〉

∣∣2 + ∣∣〈a|n̂mσ̂
−
` |b〉

∣∣2) , (A.32)

which is equivalent to the branching and coagulation processes in the ordinary CP

model. Here we have used that 〈a|n̂mσ̂
+
` |b〉+〈a|n̂mσ̂

−
` |b〉= |〈a|n̂mσ̂

+
` |b〉|2+|〈a|n̂mσ̂

−
` |b〉|2

in Eq. (A.32). We expect that this approximation made in the limit of low density may

be valid near the absorbing transition point, where the order parameter n is small.

Finally, we briefly present the diagonal component of the Lindblad equation with

Lindblad operator L̂` corresponding to Eq. (A.28).

∂ρaa = 〈a|
∑
`

(
L̂`ρ̂L̂†

` −
1
2

{
L̂†
` L̂`, ρ̂

})
|a〉

=
∑

b

(∑
`

|〈a|L̂`|b〉|2ρbb−
∑
`

|〈b|L̂`|a〉|2ρaa

)
, (A.33)

where the transition rate is given by Wa,b =
∑

` |〈a|L̂`|b〉|2. Thus, by Eqs. (A.29)

and (A.32), the three Lindblad operators are obtained in Eqs. (6.3)-(6.5) with κ =

4Ω2/Γ.
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Appendix B

Appendix of chapter 2

B.1 Jacobian

As a first step towards the construction of a path integral representation, we discretize

time, n(xxx, t)→ ni, i= 1, · · · ,N, according to Ito discretization, where ∆t is the temporal

discretization interval. Delta function may be formally represented as

1 =

∫
DXδ (X) =

∫
Dn
∣∣∣δX

δn

∣∣∣δ (X) , (B.1)

where DX =
∏

i dXi is the functional measure and δ (X) =
∏

i δ (Xi) with Xi ≡ ni−

ni−1 +∆t[ f (ni−1)−ξi−1] = 0 in Ito discretization scheme. Then the Jacobian |δX/δn|

may expressed as

∣∣∣δX
δn

∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0

x 1 0 · · · 0 0

0 x 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · x 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1 , (B.2)

where is a triangular matrix with unit diagonal. Thus, the functional determinant equals

to unity.
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B.2 Correlation of noise variables

B.2.1 Kramers-Moyal expansion

The dynamics in the lattice is described by the master equation.

∂tP(x, t) =
∫

dx′
[
W(x|x′)P(x′)−W(x′|x)P(x)

]
.

In the master equation, we substitute x′ by y = x− x′ in the first term, y = x′− x in the

second term and then defining t(y,x)≡W(x+ y|x).

The master equation becomes

∂tP(x) =
∫

dy [W(x|x− y)P(x− y)−W(x+ y|x)P(x)]

=

∫
dy [t(y,x− y)P(x− y)− t(y,x)P(x)]

=

∫
dy

[
∞∑

n=0

(−y)n

n!
∂ n

∂xn (t(y,x)P(x)))− t(y,x)P(x)

]

=

∞∑
n=1

(−1)n

n!
∂ n

∂xn

(∫
dyynt(y,x)P(x)

)

=
∞∑

n=1

(−1)n

n!
∂ n

∂xn (αn(x)P(x)) ,

where αn(x) =
∫

dyynt(y,x) =
∫

dx′(x′− x)nW(x′|x). By terminating the series at the

second term, we obtain Fokker-Planck equation.

∂tP =− ∂

∂x
(α1(x)P(x))+

1
2

∂ 2

∂x2 (α2(x)P(x)) . (B.3)

B.2.2 Equivalence between Fokker-Planck equation and Langevin equa-

tion

We shall derive the equivalence between Fokker-Planck equation and Langevin equa-

tion. Consider an arbitrary function f [x(t)]. Then, we expand the stochastic equation
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of f [x(t)]:

d f [x(t)] = f [x(t)+dx(t)]− f [x(t)]

= f ′[x(t)]dx(t)+
1
2

f ′′[x(t)]dx(t)2 + · · ·− f [x(t)]

= f ′[x(t)](a(x, t)dt +b(x, t)dW )+
1
2

f ′′[x(t)](a(x, t)dt +b(x, t)dW )2 + · · ·

=

(
a[x(t), t] f ′[x(t)]+

1
2

b[x(t), t]2 f ′′[x(t)]
)

dt +b[x(t), t] f ′[x(t)]dW (t) .

(B.4)

The result Eq. (B.4) is known as Ito’s formula.

Next, Langevin equation in Ito scheme is as follows. (dW is the Wiener process. dW =

ξ dt)

dx = α1[x(t), t]dt +α2[x(t), t]dW .

We now consider the dynamics of an arbitrary function f (x(t)).

d〈 f [x(t)]〉
dt

=
d
dt

∫
dxP(x, t) f [x(t)] =

∫
dx∂tP(x, t) f [x(t)] . (B.5)

On the other hand, the left hand side with Ito’s formula Eq. (B.4) can be represented

by probability P(x, t)

d〈 f [x(t)]〉
dt

=
〈d f 〉

dt
=

∫
dxP(x, t)

(
α1[x(t), t]

∂ f
∂x

+
1
2
(α2[x(t), t])2 ∂ 2 f

∂x2

)
=

∫
dx
(
−∂x(α1(x, t)P)+

1
2

∂
2
x (α2(x, t)2P)

)
f [x(t)] . (B.6)

Comparing the right hand side of Eqs. (B.5) and (B.6), we can find connection between

Fokker-Plank equation and Langevin equation following relation.

dx
dt

= α1(x, t)+α2(x, t)ζ ,

∂tP =−∂x(α1(x, t)P)+
1
2

∂
2
x (α2(x, t)2P) . (B.7)
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In summary, we obtained the Fokker-Planck equation [Eq. (B.3)] from the master

equation by Kramers-Moyal expansion, and then using the Ito’s formula we obtain the

Langevin equation [Eq. (B.7)] from Fokker-Planck equation [Eq. (B.3)].

B.2.3 Application to contact process

Now we shall deal with the derivation of the correlation of noise in the contact process.

The contact process has a reaction scheme such that branching A+ φ
κ−→ A+A and

decay A
γ−→ φ . Let us consider the notation:

I = number of active sites = extensive variable ∝ system size N ,

n = density of active sites (I/N) = intensive variable ,

W (∆I|I) = the size of jump is expressed in terms of the extensive variable ∆I .

Thus, the transition rates are as follows:

W (I +1|I) = Nκn(1−n) for branching ,

W (I−1|I) = Nγn for decay .

Then the master equation for the probability P(n, t) reads

∂tP(n, t) =
∫

dn′
[
W (n|n′)P(n′, t)−W (n′|n)P(n, t)

]
= F

(
n− 1

N

)
P
(

n− 1
N

)
−F(n)P(n)+G

(
n+

1
N

)
P
(

n+
1
N

)
−G(n)P(n) ,

(B.8)

where F(n) = Nκn(1−n) and G(n) = Nγn. Expanding the inverse system size F(n±

1/N)P(n±1/N) = F(n)P(n)±N−1∂n[F(n)P(n)]+(1/2)N−2∂ 2
n [F(n)P(n)], the mas-
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ter equation becomes

∂tP(n, t)'−
∂

∂n

[
(κn(1−n)− γn)P(n)

]
+

∂ 2

∂n2

[
κn(1−n)+ γn

2N
P(n)

]
, (B.9)

which is equivalent to the Kramers-Moyal expansion up to second order.

The Fokker-Planck equation in Eq. (B.9) is equivalent to the following set of

Langevin equation:

∂tn = (κ(1−n)n− γn)+

√
κ(1−n)n+ γn

N
ζ︸ ︷︷ ︸

≡ξ

Hereby, the ζ denotes Gaussian white noise terms. Therefore, the noise correlation

shows the multiplicative nature such that 〈ξ (x, t)ξ (x′, t)〉= (κ(1−n)n+γn)/N δ (x−

x′)δ (t− t ′)∼ nδ (x−x′)δ (t− t ′).

B.3 Continuum limit

For example in one dimension, the second term in Eq. (2.6) is written as

κ

2

∑
i, j

n j(t)(1−ni(t)) =
κ

2

∑
i

(1−ni)(ni−1 +ni+1)

'
∑

i

κ

2
(1−ni)

(
ni−∇ni +

∇2ni

2
+ni +∇ni +

∇2ni

2

)
=
∑

i

κ

2
(1−ni)(2ni +∇

2ni) (B.10)

In the mean-field, Eq. (B.10) is represented as

κ

2d
(1−n)(2dn+d∇

2n) =
κ

2
∇

2n+κ(1−n)n− κ

2
n∇

2n .

The last term [∼ ni∇
2ni+1] is irrelevant (we can easily check in MSRJD action).
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B.4 Rapidity-reversal symmetry

DP has a rapidity-reversal symmetry in which Eq. (2.11) is invariant under the trans-

formation such that n(rrr, t)↔−ñ(rrr,−t). This leads to the relation that two exponents

β and β̃ are identical. In this appendix, we derive the dynamic equation of the phase

boundary of active state of the DP class. Rescaling n →
√

Γ

2u3
n, ñ →

√
2u3
Γ

ñ, and√
Γu3

2 → u3 [28], the action is written as

S =

∫
dxxx
[
ñ
(
τ∂t −D∇

2−Dσ ∇
σ +u2

)
n+u3(n− ñ)nñ

]
. (B.11)

If the system is near a critical point, the saddle-point approximation may be valid. The

dynamic equations for n and ñ are obtained from the effective action, by the saddle

point approximation δS
δn = 0 and δS

δ ñ = 0, which is given by

δS
δ ñ

= (τ∂t −D∇
2−Dσ ∇

σ +u2)n+u3n2−2u3ñn = 0 .

(B.12)

δS
δn

= (−τ∂t −D∇
2−Dσ ∇

σ +u2)ñ−u3ñ2 +2u3ñn = 0 .

(B.13)

According to the definition of the rapidity-reversal symmetry, we rewrite Eq. (B.12)

under the transformation n(rrr, t)↔−ñ(rrr,−t) as

∂t ñ =−D∇
2ñ−Dσ ∇

σ ñ+u2ñ−u3ñ2 +2u3ñn . (B.14)

This corresponds to Eq. (B.13) and hence the rapidity-reversal symmetry holds.
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B.5 Homogeneous mean-field equation of the CP

Inhomogeneous mean-field equation was give as Eq. (2.8). Assume that spatially ho-

mogeneous, then the diffusive term is ignored, which is given by

∂tn = (κ−1)n−κn2 . (B.15)

In steady state ∂tn = 0, n = (κ−1)β/κ with β = 1.

B.6 Wick’s theorem

Wick’s theorem : The subscript 0 is used to indicate that the expectation values are

taken with respect to the unperturbed Gaussian (quadratic) action.

〈
l∏

i=1

ni〉0 =


0 for l odd

sum over all connected components for l even
(B.16)

B.7 Momentum space representation and bare propagator

(Green’s function)

To compute momentum RG, we shall represent in momentum space using Fourier

transform given by

ñ(xxx, t) =
∫

dqñq ei(kkk·xxx−ωt) , n(xxx, t) =
∫

dqnq ei(kkk·xxx−ωt) , (B.17)
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where qqq ≡ (kkk, ω) and dq = ddkdω/(2π)d+1. Then, action given in Eq. (2.16) in mo-

mentum space becomes

S0 =

∫
dq
∫

dq′
∫

dt
∫

ddx
[
ei(kkk+kkk′)·xxxe−i(ω+ω ′)t ñq′

(
−iτω +Dk2−u2

)
nq

]
=

∫
dq
[
ñ−q(−iτω +Dk2−u2)nq

]
,

Sint =

∫
dq
∫

dq′
∫

dq′′
∫

dt
∫

ddx
[
u3ei(kkk+kkk′+kkk′′)·xxxe−i(ω+ω ′+ω ′′)t ñq(nq′′− ñq′′)nq′

]
=

∫
dq
∫

dq′
[
u3ñq(n−q−q′− ñ−q−q′)nq′

]
. (B.18)

The quadratic free action may be expressed as

S0 =
1
2

∫
dq
(

n−q ñ−q

) 0 Dk2−u2 + iτω

Dk2−u2− iτω 0

 nq

ñq

 .

(B.19)

Then partition function with respect to the external fields ( j, j̃) is given by

Z0[ j, j̃] =

∫
Dn
∫

Dñ exp [−S0 +
∫

dq( j̃ñ+ jn)]∫
Dn
∫

Dñ exp [−S0]

= exp
[1

2

∫
dq
(

j−q j̃−q

) 0 Dk2−u2 + iτω

Dk2−u2− iτω 0

−1 jq

j̃q

] .
(B.20)
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We now directly compute the matrix of two-point correlation functions

 〈n−qnq〉 〈n−qñq〉

〈ñ−qnq〉 〈ñ−qñq〉

=

 δ 2Z[ j, j̃]
δ j−qδ jq

δ 2Z[ j, j̃]
δ j−qδ j̃q

δ 2Z[ j, j̃]
δ j̃−qδ jq

δ 2Z[ j, j̃]
δ j̃−qδ j̃q


=

 0 Dk2−u2 + iτω

Dk2−u2− iτω 0

−1

=

 0 (Dk2−u2− iτω)−1

(Dk2−u2 + iτω)−1 0

 .

(B.21)

Thus, G(k, ω) = (Dk2−u2− iτω)−1 and G(−k,−ω) = (Dk2−u2 + iτω)−1.

B.8 Derivation of the fractional Laplacian in continuum limit

In this appendix, we shall derive the fractional Laplacian of long-range interaction in

continuum limit of Langevin equation. The second term in Eq. (2.29) is rewritten as

κ

∑
j

P(|rrri− rrr j|)n j(1−ni) = κ

∑
j

P(|rrri− rrr j|)(n j−ni +ni)(1−ni)

= κni(1−ni)+κ

∑
j

P(|rrri− rrr j|)(n j−ni)

+κ

∑
j

P(|rrri− rrr j|)(n j−ni)ni , (B.22)

where the last term in Eq. (B.22) is higher order in spatial fluctuation. Thus, we ignore

the last term and let us consider the second term in the continuum limit. As the lattice

spacing goes to zero, a summation would be interpreted as the following integral

∑
rrr′

P(|rrr− rrr′|)(n(rrr′, t)−n(rrr, t))→
∫

ddr′P(|rrr− rrr′|)(n(rrr′, t)−n(rrr, t)) . (B.23)
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The Levy-flight distribution P(|rrr− rrr′|) ∼ 1/|r− r′|d+σ is normalized as
∫

dr′P(r−

r′) = 1. Fourier transformation leads to

∫
ddr′P(|rrr− rrr′|)(n(rrr′, t)−n(rrr, t))

=

∫
ddk
(2π)d P(k)n(k)eik·r

=

∫
ddr′

∫
ddk
(2π)d

∫
ddk′

(2π)d P(k′)
(

n(k)ei(kkk−kkk′)·rrr′eikkk·rrr

−n(k)ei(kkk−kkk′)·rrre−ikkk′·rrr
)

=

∫
ddk
(2π)d

(
P(k)−P(0)

)
n(k)eik·r

'
∫

ddk
(2π)d

(
a2∇

2 +aσ ∇
σ
)

n(k)eik·r

=
(
a2∇

2 +aσ ∇
σ
)

n(r) where


aσ > 0 if σ < 2

a2 > 0 if σ > 2
(B.24)

Here, the anomalous diffusive operator ∇σ describes the long-range interaction and it

is defined ∇σ eikkk·rrr =−|kkk|σ eik·r. The normalization condition is satisfied when we con-

sider the lower cutoff part of the Levy distribution P(r) = PL(r)+PS(r) where PL(r) ∝

1/(r2 + a2)(d+σ)/2 is a Levy-flight part and PS(r) ∝ e−r2/a2
is a short-range contri-

bution with the lower cutoff length scale a. Fourier transformation leads to PL(k) ∝

(k/a)σ/2Kσ/2(ak) and PS(k) ∝ e−(ak)2/4 where Kσ/2 is the modified Bessel function

of the second kind. Therefore, we used P(k) = P(0)− B
2−σ

(ak)σ − (A− B
2−σ

)(ak)2 +

O(k4,k2+σ ) ≡ P(0)− aσ kσ − a2k2 +O(k4, k2+σ ) using long-wavelength expansion

with positive, non-singular constant A and B. Therefore, when we solve the Langevin

equation with long-range interactions in continuum limit, the term of the long-range

interaction leads to

κ

∑
j

P(|rrri− rrr j|)(n j−ni)→ (D∇
2 +Dσ ∇

σ )n(r) , (B.25)
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where D = a2κ and Dσ = aσ κ .

155



Appendix C

Appendix of chapter 4

C.1 Coarse-grained variables

Here, we represent the critical points along the transition line as κc(ω) for each given

ω and the tricritical point as (κt ,ωt). Note that κc(ωt) = κt . In numerical simulations,

these physical quantities are measured as a function of κ for each value of ω . The

relations of u2 and u3 as a function of κ and ω are determined as follows. Sufficiently

close to the tricritical point, we can expand u2 = u2(κ,ω) for fixed ω = ωt and u3 =

u3(κ,ω) along the transition line (κc(ω),ω) using chain rules:

u2(κ,ωt) = u2(κt +∆κ,ωt) = ∂κu2|κt ∆κ +O((∆κ)2) ,

u3(κ,ω) = u3(κc(ω)+∆κ,ωt −∆ω)

= ∂κu3|κt ,ωt ∆κ +(∂κu3∂ωκ|κt ,ωt +∂ωu3)∆ω +O(∆κ∆ω) . (C.1)

If we perform a simulation at (κc(ω),ω), δω� δκ , we can reduce u2 ' ∆κ at a fixed

ωt in Eq. (4.6) and u3 ' ∆ω along the transition line in Eq. (4.7). We first obtain ν‖

using Eq. (4.6), and then the crossover exponent φ is obtained using Eq. (4.7). The

exponents and relations are characterized by four independent exponents: δ , δ ′, z, and

ν‖.
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C.2 Calculation of propagator

Let us evaluate the propagator loop integral to determine why the fractional Laplacian

is not renormalized. This can be done using the propagator loop integral in Ref. [53].

The only difference between the ordinary TDP and the LTDP lies in the Green func-

tion, which changes slightly from G(kkk,ω)= (Dk2−iωτ+u2)
−1 to G(kkk,ω)= (Dσ kσ−

iωτ + u2)
−1. Because the cubic terms remain the same, the relevant diagrams do not

change, as shown in Ref. [53]. I0(k,ω) is given by

I0(k,ω) =

=

∫
ddq1

(2π)d

∫
ddq2

(2π)d

∫
dω1

(2π)

∫
dω2

(2π)
G(−kkk−qqq1,−ω−ω1)

×G(qqq1,ω1)G(qqq1 +qqq2,ω1 +ω2)G(−qqq2,−ω2)

=

∫
ddq1

(2π)d

∫
ddq2

(2π)d

∫
dω1

(2π)

1
Dσ |kkk+qqq1|σ + i(ω +ω1)τ +u2

× 1
Dσ qσ

1 − iω1τ +u2

1
Dσ qσ +Dσ |qqq1 +qqq2|σ − iω1τ +2u2

=

∫
ddq1

(2π)d

∫
ddq2

(2π)d
1

(iω +Dσ qσ
1 +Dσ |qqq1 + kkk|σ +2u2)

× 1
(iω +Dσ |qqq1 +qqq2|σ +Dσ qσ +Dσ |qqq1 + kkk|σ +3u2)

, (C.2)
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where we set τ = 1 and D = 1 without loss of generality. After ω1 and ω2 in Eq. (C.2)

are integrated out using the Cauchy integral, I0 is given by

I0(k,ω) =

∫
ddq1

(2π)d

∫
ddq2

(2π)d
1

(iω +qσ
1 + |qqq1 + kkk|σ +2u2)

× 1
(iω + |qqq1 +qqq2|σ +qσ

2 + |qqq1 + kkk|σ +3u2)

=

∫
ddq1

(2π)d

∫
ddq2

(2π)d
1

iω +qσ
1 + |qqq1 + kkk|σ +2u2

×
∫ i∞

−i∞
dz1Γ(1+ z1)Γ(−z1)

(
iω +qσ

2 + |qqq1 + kkk|σ +3u2

)z1

|qqq1 +qqq2|σ(1+z1)

=

∫
ddq1

(2π)d

∫
ddq2

(2π)d
1

iω +qσ
1 + |qqq1 + kkk|σ +2u2

∫ i∞

−i∞
dz1

×
∫ i∞

−i∞
dz2Γ(1+ z1)Γ(−z1)Γ(z2− z1)Γ(−z2)

(
iω + |qqq1 + kkk|σ +3u2

)z2

|qqq1 +qqq2|σ(1+z1)qσ(z2−z1)
2

,

(C.3)

where we used the Mellin–Barnes representation

1
(X +Y )λ

=

∫ i∞

−i∞
dz

Y z

Xλ+z

Γ(λ + z)Γ(−z)
Γ(λ )

.

Now, the integral over q2 in Eq. (C.3) becomes

∫
ddq2

(2π)d
1

qa
2|qqq1 +qqq2|b

=
qd−(a+b)

1 Γ(a+b−d
2 )Γ(d−a

2 )Γ(d−b
2 )

(4π)d/2Γ(a
2)Γ(

b
2)Γ(d−

a+b
2 )

. (C.4)

After Eq. (C.4) is inserted into Eq. (C.3), I0 is given by

I0 =

∫
ddq1

(16π3)d/2

∫ i∞

−i∞
dz1

∫ i∞

−i∞
dz2Γ(1+ z1)Γ(−z1)Γ(z2− z1)Γ(−z2)

×
Γ(σ

2 (z2 +1)− d
2 )Γ(

d
2 −

σ

2 (z1 +1))Γ(d
2 −

σ

2 (z2− z1))

Γ(σ

2 (1+ z1))Γ(
σ

2 (z2− z1))Γ(d− σ

2 (1+ z2))

×
qd−σ(z2+1)

1

(
iω + |qqq1 + kkk|σ +3u2

)z2

iω +qσ
1 + |qqq1 + kkk|σ +2u2

. (C.5)
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Then, let us expand the last term in Eq. (C.5) with respect to k and ω .

∫
ddq1

(16π3)d/2

qd−σ(z2+1)
1

(
iω + |qqq1 + kkk|σ +3u2

)z2

iω +qσ
1 + |qqq1 + kkk|σ +2u2

=

∫
ddq1

(16π3)d/2 qd−σ(z2+1)
1

×

(
qσ

1 +3u2 + iω +σqσ−1
1 k cos(θ)+ σ

2 k2qσ−2
1 + σ

4 (
σ

2 −1)qσ−2
1 k2 cos2(θ)+O(k3)

)z2

2qσ
1 +2u2 + iω +σqσ−1

1 k cos(θ)+ σ

2 k2qσ−2
1 + σ

4 (
σ

2 −1)qσ−2
1 k2 cos2(θ)+O(k3)

=

∫
ddq1

(16π3)d/2

qd−σ(z2+1)
1 (3u2 +qσ

1 )
z2

2qσ
1 +2u2(

1+
iω +σqσ−1

1 k cos(θ)+ σ

2 k2qσ−2
1 + σ

4 (
σ

2 −1)qσ−2
1 k2 cos2(θ)+O(k3)

3u2 +qσ
1

)z2
×

(
1+

iω +σqσ−1
1 k cos(θ)+ σ

2 k2qσ−2
1 + σ

4 (
σ

2 −1)qσ−2
1 k2 cos2(θ)+O(k3)

2qσ
1 +2u2

)−1

=

∫
ddq1

(16π3)d/2

qd−σ(z2+1)
1 (3u2 +qσ

1 )
z2

2qσ
1 +2u2

[
1+ iω

( z2

3u2 +qσ
1
− 1

2u2 +2qσ
1

)
+ k
(z2σqσ−1

1 cos(θ)
3u2 +qσ

1
−

σqσ−1
1 cos(θ)

2u2 +2qσ
1

)
+ k2

(z2

(
σ

2 qσ−2
1 + σ

4 (
σ

2 −1)cos2(θ)
)

3u2 +qσ
1

−
σ

2 qσ−2
1 + σ

4 (
σ

2 −1)cos2(θ)

2u2 +2qσ
1

+
z2(z2−1)σ2q2σ−2

1 cos2(θ)

2(3u2 +qσ
1 )

2

+
σ2q2σ−2

1 cos2(θ)

(2u2 +2qσ
1 )

2 +
z2σ2q2σ−2

1 cos2(θ)

(3u2 +qσ
1 )(2u2 +2qσ

1 )

)
+O(k3,ω2,kω)

]
. (C.6)

We used the following relation, because k is very small in the long-wavelength limit.

(qqq1 + kkk)σ = ((qqq1 + kkk)2)σ/2

= qσ
1 +σqσ−2

1 qqq1 · kkk+
σ

2
k2qσ−2

1 +
σ

4
(
σ

2
−1)qσ−4

1 (2qqq1 · kkk)2 +O(k3)

= qσ
1 +σqσ−1

1 k cos(θ)+
σ

2
k2qσ−2

1 +σ(
σ

2
−1)qσ−2

1 k2 cos2(θ)+O(k3) ,

(C.7)
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where θ is the angle between qqq1 and kkk. To evaluate Eq. (C.6), it is often helpful to use

the formulas

∫
ddq1

(2π)d f (q1) =
Sd−1

(2π)d

∫
∞

0
dq1

∫
π

0
dθ f (q1)sind−2(θ)

=
Sd

(2π)d

∫
∞

0
dq1 f (q1) ,∫

ddq1

(2π)d f (q1)cos(θ) =
Sd−1

(2π)d

∫
∞

0
dq1

∫
π

0
dθ f (q1)sind−2(θ)cos(θ) = 0 ,∫

ddq1

(2π)d f (q1)cos2(θ) =
Sd−1

(2π)d

∫
∞

0
dq1

∫
π

0
dθ f (q1)sind−2(θ)cos2(θ)

=
Sd

d(2π)d

∫
∞

0
dq1 f (q1) , (C.8)

where the surface area is defined as Sd = 2πd/2

Γ(d/2) . Then, Eq. (C.5) is given as follows:

I0(k,ω) =

∫ i∞

−i∞
dz1

∫ i∞

−i∞
dz2Γ(1+ z1)Γ(−z1)Γ(z2− z1)Γ(−z2)×

Γ(σ

2 (z2 +1)− d
2 )Γ(

d
2 −

σ

2 (z1 +1))Γ(d
2 −

σ

2 (z2− z1))

Γ(σ

2 (1+ z1))Γ(
σ

2 (z2− z1))Γ(d− σ

2 (1+ z2))
Sd

×
∫

∞

0

dq1

(16π3)d/2

qd−σ(z2+1)
1 (3u2 +qσ

1 )
z2

2qσ
1 +2u2

×
[
1+

iω
Dσ

( z2

3u2 +qσ
1
− 1

2u2 +2qσ
1

)
+ k2

(z2

(
σ

2 qσ−2
1 + σ

4d (
σ

2 −1)
)

3u2 +qσ
1

−
σ

2 qσ−2
1 + σ

4d (
σ

2 −1)
2u2 +2qσ

1
+

z2(z2−1)σ2q2σ−2
1

2d(3u2 +qσ
1 )

2

+
σ2q2σ−2

1
d(2u2 +2qσ

1 )
2 +

z2σ2q2σ−2
1

d(3u2 +qσ
1 )(2u2 +2qσ

1 )

)]
+O(k3,ω2,kω)

= N0 +Nωω +Nk2k2 +O(k3,ω2,kω) , (C.9)

where N0, Nω , and Nk2 are coefficients. Finally, because the derivative of Eq. (C.9)

with respect to kσ vanishes, the coefficient Dσ is not renormalized up to the first order

in the ε expansion around the upper critical dimension. Although we showed that it

is valid for up to O(ε), it is commonly believed that nonlocal terms of the dynamic
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action are not renormalized at all [171–173].

C.3 Tables of numerical estimates

Table C.1: Critical exponents for the LTDP model in two dimensions. For σ < 4/3, the univer-
sality class belongs to the mean-field LTDP. For 4/3 < σ < 2.2, the universality class belongs
to the LTDP. Finally, for σ > 2.2, the universality class belongs to the STDP.

σ (κt , ωt) δ δ ′ z̄≡ z/d ν‖ η φ

0.2 (0.609401, 0.378) 0.500±0.005 1.00±0.02 0.666±0.01 1.00±0.01 0.000±0.005 0.50±0.01

0.4 (0.612271, 0.400) 0.500±0.005 1.00±0.02 0.666±0.01 1.00±0.01 0.000±0.005 0.50±0.01

0.6 (0.616819, 0.424) 0.500±0.005 1.00±0.02 0.666±0.01 1.00±0.01 0.000±0.005 0.50±0.01

0.8 (0.622538, 0.450) 0.500±0.005 1.00±0.02 0.666±0.01 1.00±0.01 0.000±0.005 0.50±0.01

1.0 (0.628244, 0.475) 0.500±0.01 0.99±0.02 0.666±0.01 1.00±0.01 0.000±0.005 0.50±0.01

1.2 (0.635410, 0.506) 0.485±0.01 1.00±0.02 0.678±0.01 1.02±0.01 −0.010±0.005 0.50±0.01

1.4 (0.643351, 0.543) 0.397±0.01 1.01±0.02 0.725±0.01 1.03±0.01 −0.022±0.005 0.50±0.01

1.5 (0.647071, 0.562) 0.345±0.01 1.013±0.02 0.758±0.01 1.03±0.01 −0.029±0.005 0.51±0.01

1.6 (0.650679, 0.582) 0.309±0.01 1.021±0.02 0.784±0.01 1.04±0.01 −0.032±0.005 0.51±0.01

1.7 (0.653822, 0.601) 0.281±0.01 1.031±0.02 0.819±0.01 1.04±0.01 −0.052±0.005 0.51±0.01

1.8 (0.656771, 0.621) 0.253±0.01 1.041±0.02 0.849±0.01 1.05±0.01 −0.071±0.01 0.51±0.02

1.9 (0.659371, 0.641) 0.223±0.01 1.050±0.01 0.881±0.01 1.06±0.01 −0.091±0.01 0.52±0.02

2.0 (0.661659, 0.662) 0.212±0.01 1.073±0.01 0.922±0.01 1.07±0.01 −0.129±0.01 0.52±0.02

2.1 (0.663511, 0.683) 0.184±0.01 1.100±0.01 0.961±0.01 1.08±0.01 −0.180±0.01 0.52±0.02

2.2 (0.664880, 0.703) 0.172±0.01 1.150±0.01 0.992±0.01 1.09±0.01 −0.211±0.01 0.52±0.02

2.4 (0.666269, 0.742) 0.123±0.01 1.211±0.01 1.045±0.01 1.12±0.01 −0.288±0.01 0.52±0.02

2.6 (0.666487, 0.769) 0.105±0.01 1.22±0.01 1.055±0.01 1.14±0.01 −0.334±0.01 0.52±0.02

2.8 (0.666001, 0.792) 0.098±0.01 1.22±0.01 1.055±0.01 1.15±0.01 −0.353±0.01 0.52±0.02

∞ (0.6606466, 0.879) 0.09±0.01 1.22±0.008 1.055±0.005 1.15±0.005 −0.35±0.008 0.52±0.02
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Table C.2: Critical exponents for the LTDP model in one dimension. For σ < 2/3, the univer-
sality class belongs to the mean-field LTDP. For 2/3 < σ < 1.0, the universality class belongs
to the LTDP. Finally, for σ > 1.0, the tricritical point does not exist.

σ (κt ,ωt) δ δ ′ z̄≡ z/d ν‖ η φ

0.2 (0.603919, 0.388) 0.50±0.005 1.000±0.01 0.666±0.005 1.00±0.01 0.00±0.005 0.50±0.02

0.4 (0.616681, 0.471) 0.50±0.005 0.99±0.01 0.666±0.005 1.00±0.01 0.00±0.005 0.50±0.02

0.6 (0.631031, 0.576) 0.49±0.01 0.96±0.01 0.670±0.005 1.01±0.01 0.00±0.005 0.50±0.02

0.7 (0.637510, 0.654) 0.34±0.01 0.91±0.01 0.701±0.01 1.05±0.01 0.00±0.005 0.52±0.02

0.8 (0.637551, 0.744) 0.25±0.01 0.88±0.01 0.878±0.01 1.09±0.01 −0.013±0.01 0.54±0.02

0.9 (0.622539, 0.846) 0.14±0.01 0.83±0.01 1.05±0.01 1.18±0.01 −0.04±0.01 0.56±0.02

1.0 (0.556705, 0.960) 0.04±0.01 0.76±0.01 1.43±0.01 1.34±0.01 −0.09±0.01 0.58±0.02

1.05 Tricritical point does not exist
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Appendix D

Appendix of chapter 6

D.1 Classical contact process using the quantum jump Monte

Carlo method

In this section, we consider ω → 0. When κ � γ , inactive particles become more

abundant with time, and eventually the system is fully occupied by inactive particles.

Thus, the system is no longer dynamic and falls into an absorbing state. When κ � γ ,

the system remains in an active state with a finite density of active particles. Thus, the

classical CP exhibits a phase transition from an active to an absorbing state as κ is

decreased.

The critical exponents of 1d-QCP were obtained using the finite-size scaling from

the data of QJMC method in the main text. To check the validity of the finite-size

scaling with the small system size, we consider the 1d classical contact process (CCP)

where κ is finite and ω = 0 (see Eqs. (2-5) in the main text). At the critical point, we

perform the finite-size scaling to 1d-CCP using the QJMC method. The observables

correspond to the definitions of the main text.

First, we obtain the exponents δ +δ ′, η , δ ′, z, δ , and α directly by measuring the

slopes in the double-logarithmic plots shown in Figs. D.1 and D.2. Then, we collapse

the data by using the obtained exponents to compute the dynamic exponent z. Specif-

ically, we plot ρdtδ+δ ′ versus tN−z in Fig. D.1(a), Nat−η versus tN−z in Fig. D.1(b),

and P(t)t−δ ′ versus tN−z in Fig. D.1(c) for different system sizes N. We measure the

exponent z directly using the plot of R2(t) versus t in Fig. D.1(d). In classical contact

163



process, we can classify the surviving runs and thus we measure the exponent −δ di-

rectly using the plot of ρd,s(t) versus t in Fig. D.1(e). Next, we plot n(t)t−α versus

tN−z in Fig. D.2(a) for different system sizes N. The exponent ν‖ is obtained from the

rescaling plot of n(t)tα versus t(ωc−ω)ν‖ for different ω values in Fig. D.2(b).

The critical exponents are thus obtained as δ +δ ′ = 0.32±0.01, η = 0.31±0.02,

δ ′ = 0.16± 0.01, δ = 0.16± 0.02, z = 1.58± 0.03, and α = 0.16± 0.01. Note that

δ = α . In addition, α = δ ′ implying that rapidity-reversal symmetry holds. All the

critical exponents are in good agreement with the DP values within the error bars. Thus

we verified that the critical exponents on classical contact process can be successfully

obtained using QJMC method with the same system size in main text.

D.2 Test of scaling relations using classical Monte Carlo sim-

ulations

We mentioned that ρd(t) and n(t) show the same asymptotic behavior, which means

that δ = α holds [174, 175]. In this section, we shall test this relation using classical

Monte Carlo simulations. The models we consider here are 1d contact process and 2d

tricritical contact process. It was revealed that rapidity reversal symmetry holds for 1d

contact process [28] and does not hold for 2d tricritical contact process [54, 55]. By

measuring the slopes in the double-logarithmic plots, we measure the complete set of

critical exponents.

In Fig. D.3(a), the values of all critical exponents for 1d contact process are z =

1.58, δ = 0.16, η = 0.31, δ ′ = 0.16, and α = 0.16. Note that δ ′ = α and the gen-

eralized hyperscaling relation η −D/z = −δ − δ ′ hold. In addition, δ = δ ′ because

rapidity-reversal symmetry holds. Next, in Fig. D.3(b), the values of all critical expo-

nents for 2d tricritical contact process are z = 2.11, δ = 0.09, η = −0.35, and δ ′ =

1.21. Note that δ ′ = α and the generalized hyperscaling relation η −D/z = −δ − δ ′

hold. However, δ 6= δ ′ because rapidity-reversal symmetry is broken.
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Thus, the scaling relations δ = α and η−D/z =−δ −δ ′, which is believed to be

satisfied with the single absorbing state phase transition, hold; however δ = δ ′ when

the rapidity-reversal symmetry holds.

D.3 Critical behavior by neural network approach with dif-

ferent training regions

For supervised learning, it is advantageous to take a narrower test region [white region

in Fig. D.4(a)], because more information can be taken in the training region. However,

if the test region is too narrow to include the crossing point, the crossing point of the

outputs would not be the critical point. To avoid this case, it is desirable to take a test

region with an appropriate size.

We took the left boundary ω = 4 in the main text, because this is the value at

which the order parameter n(t) decays exponentially, i.e., at which the system is in

the subcritical region, as shown in Fig. D.5. This result was obtained using the QJMC

method. However, the boundary ω = 8 was taken, because n(t) behaves as it does in

the supercritical state.

To check the sensitivity of the positions of the left and right boundaries, we also

considered a test region of (3 ≤ ω ≤ 9) and then estimated the transition point ωc in

the thermodynamic limit and the value of the exponent ν⊥. As shown in Fig. D.4, we

obtained the same values of ωc and ν⊥.
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Figure D.1: Estimates of the critical exponents of the 1d-CCP starting from the single
active initial state. (a) Plot of ρd(t) versus t, which behaves as ρd(t) ∼ t−δ−δ ′ . The
solid line is a guideline with slope −0.32. Inset: scaling plot of ρd(t)tδ+δ ′ versus tN−z

for δ +δ ′ = 0.32 and z = 1.58. (b) Scaling plot of Na(t)t−η versus tN−z for η = 0.30
and z = 1.58. (c) Scaling plot of P(t)tδ ′ versus tN−z for δ ′ = 0.16 and z = 1.58. (d)
Plot of R2(t) as a function of t. The solid line is a guideline with slope 2/z for z = 1.58.
(e) Scaling plot of ρd,s(t)tδ versus tN−z for δ = 0.16 and z = 1.58. The parameter t is
given in units of 1/γ .
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Figure D.2: Estimates of the critical exponents of the 1d-CCP starting from the fully
active initial state. (a) Plot of n(t) as a function of t, which shows n(t)∼ t−α . The solid
line is a guideline with slope −0.16. Inset: the scaling plot of n(t)tα versus tN−z for
α = 0.16 and z = 1.58. (b) Plot of n(t) as a function of t for different values of ω < ωc.
Inset: Data points collapse well onto a single curve for α = 0.16, and ν‖ = 1.73. The
parameter t is given in units of 1/γ .

Figure D.3: The behaviors of physical quantities as a function of time t at the transition
point. (a) For the classical CP. The solid lines are a guideline with slope 2/z, η , −δ =
−δ ′ = −α , η − 1/z, from top to bottom. The values of all critical exponents are z =
1.58, δ = 0.16, η = 0.31, δ ′ = 0.16, and α = 0.16. Note that δ ′ = α and rapidity-
reversal symmetry holds. (b) For the 2d classical tricritical contact process starting
from a single active site. The solid lines are a guideline with slope 2/z, −δ =−α , η ,
−δ ′, and η−1/z from top to bottom. The values of all critical exponents are z = 2.11,
δ = 0.09, η =−0.35, and δ ′ = 1.21. Note that rapidity-reversal symmetry is broken.
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Figure D.4: Plots using the neural network approach. (a) Plot of the output averaged
over a test set as a function of ω for different system sizes. The value of the first (sec-
ond) output neuron is represented as solid (dashed) line. From this plot, we estimate
the crossing point of the two outputs and regard it as the transition point ωc(N) for a
given system size N. The shaded regions ω ∈ [0,3] and ω ∈ [9,12] indicate the train-
ing sets used in the convolutional NN (CNN) analysis. (b) Plot of ωc−ωc(N) versus
N, where ωc is chosen so as to yield power-law behavior, which is typical near the
transition point ωc. The slope represents the value of the critical exponent −1/ν⊥. (c)
Scaling plot of the output versus (ω−ωc)N1/ν⊥ . For the obtained numerical values of
ν⊥ and ωc, the data collapse well for system sizes N = 10,12,14,16, and 18. From (b)
and (c), we obtain ωc ≈ 6.04 and ν⊥ = 1.06±0.04. The units of control parameter is
given as γ .
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Figure D.5: Plot of n(t) as a function of t for different ω . For ω = 4.00, an exponen-
tially decaying curve is observed. On the other hand, for ω = 8.00, a stationary state
converges to a finite density. At the critical point ω = 6.04, it exhibits power-law be-
havior. System size is taken as N = 20.
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Appendix E

Appendix of chapter 7

E.1 Fluctuationless mean-field approach for DTI

To explore the MF phase transition, we extract the MF equation from the DQIM, one

may explore the equation of motion of observables. The equations of motion of an

observable O we employ the conjugate Master equation,

∂tÔ = i
[
ĤS, Ô

]
+

N∑
`=1

[
L̂†
` ÔL̂`−

1
2

{
L̂†
` L̂`, Ô

}]
. (E.1)

Ignoring correlations and taking uniform fields, we arrive at the MF equations, which

are given by

∂tσ
x = 4Jσ

y
σ

z−Γ(1+σ
x) ,

∂tσ
y =−4Jσ

x
σ

z−2∆σ
z− Γ

2
σ

y ,

∂tσ
z = 2∆σ

y− Γ

2
σ

z . (E.2)

Then we find the transition line as follows:

Γ/J = 4
√

2(∆/J)− (∆/J)2 ,
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Figure E.1: (a) Phase diagram of the fully-connected DTI in the parameter space (∆, Γ).
Continuous transitions (solid line) occur. (b) Histogram of order parameter in steady
states as a function of Γ at ∆ = 0.1. Continuous transition occurs with Z2 symmetry.
System size is taken as N = 128.

or equivalently

J/Γ =
1+16(∆/Γ)2

32(∆/Γ)
,

which corresponds to Fig. 7.1(a) or E.1(a), respectively.

E.2 Phase transition in parameter space (∆,Γ) at J = 1

To verify the mean-field behavior, we use our exact numerical solution approach to

DTI model. The phase diagram in the parameter space (∆,Γ) is shown in Fig. E.1(a),

and the order parameter curve at ∆ = 0.1 is shown in Fig. E.1(b). It seems to be con-

tinuous, and we perform the finite-size scaling for various ∆. When the transition type

is continuous, then the critical behavior is shown and the critical exponent can be mea-

sured. In Fig. E.2, we perform the finite-size scaling at ∆ = 0.1 and obtain the critical

exponents β = 0.5 and ν̄ = dcν = 1.5. Thus, we conclude that the transition type of

DTI model in all parameter spaces is continuous. Furthermore, we find that the tran-

sition type and line are exactly the same as the result of the fluctuationless mean-field

approach instead of Keldysh formalism. The universality class belongs to the trans-
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Figure E.2: (a) Plot of |σ z| as a function of Γ−Γc at ∆ = 0.1 for different system sizes,
which shows that |σ z| ∼ (Γ−Γc)

β for β = 0.5. (b) Scaling plot of the rescaled order
parameter |σ z|Nβ/ν̄ versus (Γ−Γc)N1/ν̄ . The data are well collapsed onto a single
curve with β = 0.5 and ν̄ = 1.5.

verse Ising class where β = 0.5 and dc = 3, which is the results of conserving Z2

symmetry.

E.3 Fluctuationless mean-field approach for driven-dissipative

XY model

The fluctuationless mean-field equations for σ x(t), σ y(t), and n(t) is expressed

∂tσ
x =−2∆σ

y−2Jσ
y
σ

z− Γ

2
σ

x (E.3)

∂tσ
y = 2∆σ

x−2Ωσ
z +2Jσ

x
σ

z− Γ

2
σ

y (E.4)

∂tσ
z = 2Ωσ

y−Γ(1+σ
z) . (E.5)

For steady state,

(σ z +1)
(
Γ

2 +16(∆+ Jσ
z)2)+8Ω

2
σ

z = 0 , (E.6)
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which results in

Ω =

(
(σ z +1)

(
Γ2 +16∆2 +16J2(σ z)2 +32∆Jσ z

)
−8σ z

)1/2

. (E.7)

This mean-field equation exhibits a discontinuous phase transition for (J,∆)/Γ=(4,0.5).

The full phase diagram of the model is more complex, but it is out of the scope of this

paper.

E.4 Fluctuationless mean-field approach for QCP

One can derive fluctuationless mean-field equations for σ x(t), σ y(t), and n(t).

ṅ = ωnσ
y +(κ−1)n−2κn2 ,

σ̇
x =−ωσ

x
σ

y− 1+κ

2
σ

x−κnσ
x ,

σ̇
y = ω

{
2n+(σ x)2−4n2

}
− 1+κ

2
σ

y−κnσ
y , (E.8)

where we rescale time, tγ → t, ω/γ → ω , and κ/γ → κ . Then, the two solutions for

each region can be obtained. The first solution becomes

κ = 1 ,ω ≤ 1 , (E.9)

and the second solution is

ω =

(
1+κ−κ

2 +
√
(1+κ−κ2)2−κ4

)1/2

at κ ≤ 1 . (E.10)

The first (second) solution is the solid (dashed) line in Fig. 3(a) in the main text.

We remark that the universality class can be obtained using the Martin–Siggia–

Rose formalism (See Table S1), which has the same transition lines.

173



Table E.1: Critical exponents at a tricritical point for the MF-QCP.

Exact solution QJMC TDP1 DP

α 0.49±0.02 0.47±0.05 0.50 1.00

z 2.00±0.01 2.00±0.04 2.00 2.00

δ ′ 1.00±0.02 1.00±0.05 1.00 1.00

η 0.00±0.01 0.00±0.04 0.00 0.00

E.5 Observables of a single initial condition for QCP

First, we consider an initial state in which a single active seed is present at `= 0, and

the remaining sites are inactive. This configuration is expressed as ρ̂(0) = σ̂
+
0 ρ̂abσ̂

−
0 .

We measure the following quantities: i) the survival probability, that is, the probabil-

ity that the system does not fall into an absorbing state, P(t) = 1−Tr[ρ̂(t)ρ̂ab]; ii)

the number of active sites, Na(t) =
∑

` Tr[ρ̂(t)n̂`]; iii) the mean square distance of the

active sites from the origin, R2(t) =
∑

` Tr[`2 ρ̂(t)n̂`]/Na(t). At the transition point,

these quantities exhibit the following power-law behaviors: P(t) ∝ t−δ ′ , Na(t) ∝ tη ,

and R2(t) ∝ t2/z, ρd(t) ∝ tη−1/z. We estimate the exponents δ ′, η , and z by direct

measurement of the slopes in the double-logarithmic plots, as shown in Fig. 7.4. We

estimate the exponent z using the data collapse technique. For instance, for the survival

probability P(t), we plot P(t)tδ ′ versus tN−z for different system sizes N. We deter-

mine z as the value at which the data for different system sizes collapse onto a single

curve.
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[104] U. Schollwöck, “The density-matrix renormalization group in the age

of matrix product states,” Annals of Physics, vol. 326, no. 1, pp.

96 – 192, 2011, january 2011 Special Issue. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0003491610001752

[105] I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys., vol. 85,

pp. 299–366, Feb 2013. [Online]. Available: https://link.aps.org/doi/10.1103/

RevModPhys.85.299

[106] C. Noh and D. G. Angelakis, “Quantum simulations and many-body physics

with light,” Reports on Progress in Physics, vol. 80, no. 1, p. 016401,

nov 2016. [Online]. Available: https://doi.org/10.1088%2F0034-4885%2F80%

2F1%2F016401

[107] H. J. Carmichael, “Breakdown of photon blockade: A dissipative quantum

phase transition in zero dimensions,” Phys. Rev. X, vol. 5, p. 031028, Sep 2015.

[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.5.031028

[108] M. Müller, S. Diehl, G. Pupillo, and P. Zoller, “Engineered open systems and

quantum simulations with atoms and ions,” in Advances in Atomic, Molecular,

and Optical Physics. Elsevier, 2012, vol. 61, pp. 1–80.

189

https://doi.org/10.1007/s10955-013-0824-7
https://link.aps.org/doi/10.1103/RevModPhys.70.101
https://doi.org/10.1080/00018732.2014.933502
http://www.sciencedirect.com/science/article/pii/S0003491610001752
http://www.sciencedirect.com/science/article/pii/S0003491610001752
https://link.aps.org/doi/10.1103/RevModPhys.85.299
https://link.aps.org/doi/10.1103/RevModPhys.85.299
https://doi.org/10.1088%2F0034-4885%2F80%2F1%2F016401
https://doi.org/10.1088%2F0034-4885%2F80%2F1%2F016401
https://link.aps.org/doi/10.1103/PhysRevX.5.031028


[109] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, “Dicke quantum

phase transition with a superfluid gas in an optical cavity,” Nature,

vol. 464, no. 7293, pp. 1301–1306, Apr 2010. [Online]. Available:

https://doi.org/10.1038/nature09009

[110] K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger, “Exploring symmetry

breaking at the dicke quantum phase transition,” Phys. Rev. Lett., vol. 107,

p. 140402, Sep 2011. [Online]. Available: https://link.aps.org/doi/10.1103/

PhysRevLett.107.140402

[111] I. Bloch, “Ultracold quantum gases in optical lattices,” Nature Physics, vol. 1,

no. 1, pp. 23–30, Oct 2005. [Online]. Available: https://doi.org/10.1038/

nphys138

[112] J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, “Observation

of the photon-blockade breakdown phase transition,” Phys. Rev. X, vol. 7,

p. 011012, Jan 2017. [Online]. Available: https://link.aps.org/doi/10.1103/

PhysRevX.7.011012
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[122] A. A. Houck, H. E. Türeci, and J. Koch, “On-chip quantum simulation with

superconducting circuits,” Nature Physics, vol. 8, no. 4, pp. 292–299, Apr

2012. [Online]. Available: https://doi.org/10.1038/nphys2251

[123] E. Gillman, F. Carollo, and I. Lesanovsky, “Nonequilibrium phase transitions

in (1+ 1)-dimensional quantum cellular automata with controllable quantum

correlations,” Phys. Rev. Lett., vol. 125, p. 100403, Sep 2020. [Online].

Available: https://link.aps.org/doi/10.1103/PhysRevLett.125.100403

[124] E. Gillman, F. Carollo, and I. Lesanovsky, “Numerical Simulation of Crit-

ical Quantum Dynamics without Finite Size Effects,” arXiv e-prints, p.

arXiv:2010.10954, Oct. 2020.

[125] A. Caldeira and A. Leggett, “Quantum tunnelling in a dissipative system,”

Annals of Physics, vol. 149, no. 2, pp. 374 – 456, 1983. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0003491683902026

[126] S. Chakravarty, “Quantum fluctuations in the tunneling between superconduc-

tors,” Phys. Rev. Lett., vol. 49, pp. 681–684, Aug 1982. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevLett.49.681

[127] J. Carrasquilla and R. G. Melko, “Machine learning phases of matter,”

Nature Physics, vol. 13, no. 5, pp. 431–434, May 2017. [Online]. Available:

https://doi.org/10.1038/nphys4035

[128] D. Kim and D.-H. Kim, “Smallest neural network to learn the ising

criticality,” Phys. Rev. E, vol. 98, p. 022138, Aug 2018. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevE.98.022138

[129] W. Zhang, J. Liu, and T.-C. Wei, “Machine learning of phase transitions in

the percolation and xy models,” Phys. Rev. E, vol. 99, p. 032142, Mar 2019.

[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.99.032142

192

https://doi.org/10.1038/nphys2251
https://link.aps.org/doi/10.1103/PhysRevLett.125.100403
http://www.sciencedirect.com/science/article/pii/0003491683902026
https://link.aps.org/doi/10.1103/PhysRevLett.49.681
https://doi.org/10.1038/nphys4035
https://link.aps.org/doi/10.1103/PhysRevE.98.022138
https://link.aps.org/doi/10.1103/PhysRevE.99.032142


[130] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.

521, no. 7553, pp. 436–444, May 2015. [Online]. Available: https:

//doi.org/10.1038/nature14539

[131] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby,
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초록

최근차가운원자가스실험의발전은열린양자다체계시스템에서비평형상전

이를 연구 할 수 있는 환경을 제공했다. 이러한 비평형 상전이는 양자 요동(결맞은

해밀토니안)과 고전적인 요동(비결맞은 소실) 사이의 경쟁에서 비롯한다. 이와 관

련하여 시스템이 양자 요동이 관련있는 새로운 보편성 군을 볼 수 있을지에 대한

근본적인질문이있었다.만일보편성이새로운보편성을보이지않은다면,고전적

인보편성으로될것이고이것은양자-고전매핑에의해설명될수있다.이질문에

대한많은연구들이진행되었지만,아직완전히이해되지않았다.

본 학위논문에서 우리는 디렉티드 스미기 군에 속하는 고전적인 접촉 과정 모

델의 일반화인 양자 접촉 과정의 다체계 물리학을 고려함으로써 이 질문에 대해

탐구하려고한다.디렉티드스미기군은고전적인비평형계에서많은모델이속하

고 잘 연구 된 보편성 군이다. 양자 접촉 과정은 디렉티드 스미기 군에 추가적으로

양자 과정이 있으므로 이러한 양자 효과로 인해 새로운 보편성으로 바뀔 수 있다.

또한양자접촉과정은극저온리드버그원자계에서실험적으로구현가능하다.

구체적으로 본 학위 논문에서는 최근 양자 접촉 과정에서의 임계 현상을 다룬

다. 먼저, 쌍극자 상호 작용하는 리드버그 원자의 실험에서의 구현 가능성을 통해

우리는먼거리상호작용하는양자접촉과정을연구한다.일반적으로보편성의관

점에서봤을때,먼거리상호작용하는계는단거리상호작용하는계와다른보편성

군을 갖는다. 이와 관련하여 우리는 먼거리 상호 작용이 관련있는 구간에 대해 새

로운 고전적 보편성이 얻어지는 것을 발견하였고 이를 “먼거리 삼중 임계 스미기

군”라고 불렀다. 먼거리 상호 작용이 관련이 없는 영역의 경우 먼거리 모델의 평균

장 위상 다이어그램은 단거리 상호작용하는 양자 접촉 과정의 상 다이어그램에 해

당한다. 다음으로, 우리는 장거리 상호 작용하는 삼중 디렉티드 스미기 군의 낮은

차원 물리를 재규격화 군과 몬테 카를로 시뮬레이션을 이용하여 공부한다. 먼거리

상호작용의강도에따라평균장먼거리삼중임계스미기군에서단거리삼중임계
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스미기군으로연속적으로바뀌는것을확인했다.

일차원과이차원양자접촉과정을탐구하기위해,우리는기계학습과양자점

프 몬테카를로 시뮬레이션과 텐서 네트워크 같은 양자 시뮬레이션을 이용했다. 우

리는 일차원에서 양자 스미기 군에서 디렉티드 스미기 군으로 바뀌는 교차 구간을

발견했다.이교차구간은양자적인과정이임계현상에관련이있는것을보여준다.

또한,우리는이러한교차구간을확인할실험적인구성을제안했다.

추가적으로 우리는 소실 양자 상전이의 평균장 현상을 모두 연결된 그래프에

서의 순열 대칭을 이용하여 탐구하였다. 구체적으로 우리는 소실 양자 이징 모델,

소실 XY모델,양자접촉프로세스를고려하였다.소실양자이징모델에대해모든

영역에서 연속 상전이를 보았고 소실 XY 모델에서는 불연속 상전이를 보았다. 이

는 켈디쉬 방법과는 상반되는 결과이고 요동없는 평균장 이론의 방법과 일치한다.

또한 양자 접촉 프로세스의 상전이는 준고전적 방법을 이용한 풀이와 상전이 선과

보편성은 일치했지만, 일차원 양자 접촉 프로세스에서 본 것과 같이 교차 구간을

확인했다. 최종적으로 우리는 양자 접촉 과정의 평균장과 낮은 차원에서의 상전이

다이어그램을보였다.

주요어:열린양자계,비평형상전이,소실이있는상전이,양자접촉과정,준고전적

장론,기계학습,유한크기축적분석

학번: 2015-20353
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