11,037 research outputs found

    Applications of the Quantum Algorithm for st-Connectivity

    Get PDF
    We present quantum algorithms for various problems related to graph connectivity. We give simple and query-optimal algorithms for cycle detection and odd-length cycle detection (bipartiteness) using a reduction to st-connectivity. Furthermore, we show that our algorithm for cycle detection has improved performance under the promise of large circuit rank or a small number of edges. We also provide algorithms for detecting even-length cycles and for estimating the circuit rank of a graph. All of our algorithms have logarithmic space complexity

    Span programs and quantum algorithms for st-connectivity and claw detection

    Full text link
    We introduce a span program that decides st-connectivity, and generalize the span program to develop quantum algorithms for several graph problems. First, we give an algorithm for st-connectivity that uses O(n d^{1/2}) quantum queries to the n x n adjacency matrix to decide if vertices s and t are connected, under the promise that they either are connected by a path of length at most d, or are disconnected. We also show that if T is a path, a star with two subdivided legs, or a subdivision of a claw, its presence as a subgraph in the input graph G can be detected with O(n) quantum queries to the adjacency matrix. Under the promise that G either contains T as a subgraph or does not contain T as a minor, we give O(n)-query quantum algorithms for detecting T either a triangle or a subdivision of a star. All these algorithms can be implemented time efficiently and, except for the triangle-detection algorithm, in logarithmic space. One of the main techniques is to modify the st-connectivity span program to drop along the way "breadcrumbs," which must be retrieved before the path from s is allowed to enter t.Comment: 18 pages, 4 figure

    Approximate Span Programs

    Get PDF
    Span programs are a model of computation that have been used to design quantum algorithms, mainly in the query model. For any decision problem, there exists a span program that leads to an algorithm with optimal quantum query complexity, but finding such an algorithm is generally challenging. We consider new ways of designing quantum algorithms using span programs. We show how any span program that decides a problem ff can also be used to decide "property testing" versions of ff, or more generally, approximate the span program witness size, a property of the input related to ff. For example, using our techniques, the span program for OR, which can be used to design an optimal algorithm for the OR function, can also be used to design optimal algorithms for: threshold functions, in which we want to decide if the Hamming weight of a string is above a threshold or far below, given the promise that one of these is true; and approximate counting, in which we want to estimate the Hamming weight of the input. We achieve these results by relaxing the requirement that 1-inputs hit some target exactly in the span program, which could make design of span programs easier. We also give an exposition of span program structure, which increases the understanding of this important model. One implication is alternative algorithms for estimating the witness size when the phase gap of a certain unitary can be lower bounded. We show how to lower bound this phase gap in some cases. As applications, we give the first upper bounds in the adjacency query model on the quantum time complexity of estimating the effective resistance between ss and tt, Rs,t(G)R_{s,t}(G), of O~(1ϵ3/2nRs,t(G))\tilde O(\frac{1}{\epsilon^{3/2}}n\sqrt{R_{s,t}(G)}), and, when μ\mu is a lower bound on λ2(G)\lambda_2(G), by our phase gap lower bound, we can obtain O~(1ϵnRs,t(G)/μ)\tilde O(\frac{1}{\epsilon}n\sqrt{R_{s,t}(G)/\mu}), both using O(logn)O(\log n) space
    corecore