609 research outputs found

    The extended codes of a family of reversible MDS cyclic codes

    Full text link
    A linear code with parameters [n,k,n−k+1][n, k, n-k+1] is called a maximum distance separable (MDS for short) code. A linear code with parameters [n,k,n−k][n, k, n-k] is said to be almost maximum distance separable (AMDS for short). A linear code is said to be near maximum distance separable (NMDS for short) if both the code and its dual are AMDS. MDS codes are very important in both theory and practice. There is a classical construction of a [q+1,2u−1,q−2u+3][q+1, 2u-1, q-2u+3] MDS code for each uu with 1≤u≤⌊q+12⌋1 \leq u \leq \lfloor\frac{q+1}2\rfloor, which is a reversible and cyclic code. The objective of this paper is to study the extended codes of this family of MDS codes. Two families of MDS codes and several families of NMDS codes are obtained. The NMDS codes have applications in finite geometry, cryptography and distributed and cloud data storage systems. The weight distributions of some of the extended codes are determined

    Lists that are smaller than their parts: A coding approach to tunable secrecy

    Get PDF
    We present a new information-theoretic definition and associated results, based on list decoding in a source coding setting. We begin by presenting list-source codes, which naturally map a key length (entropy) to list size. We then show that such codes can be analyzed in the context of a novel information-theoretic metric, \epsilon-symbol secrecy, that encompasses both the one-time pad and traditional rate-based asymptotic metrics, but, like most cryptographic constructs, can be applied in non-asymptotic settings. We derive fundamental bounds for \epsilon-symbol secrecy and demonstrate how these bounds can be achieved with MDS codes when the source is uniformly distributed. We discuss applications and implementation issues of our codes.Comment: Allerton 2012, 8 page

    Hiding Symbols and Functions: New Metrics and Constructions for Information-Theoretic Security

    Get PDF
    We present information-theoretic definitions and results for analyzing symmetric-key encryption schemes beyond the perfect secrecy regime, i.e. when perfect secrecy is not attained. We adopt two lines of analysis, one based on lossless source coding, and another akin to rate-distortion theory. We start by presenting a new information-theoretic metric for security, called symbol secrecy, and derive associated fundamental bounds. We then introduce list-source codes (LSCs), which are a general framework for mapping a key length (entropy) to a list size that an eavesdropper has to resolve in order to recover a secret message. We provide explicit constructions of LSCs, and demonstrate that, when the source is uniformly distributed, the highest level of symbol secrecy for a fixed key length can be achieved through a construction based on minimum-distance separable (MDS) codes. Using an analysis related to rate-distortion theory, we then show how symbol secrecy can be used to determine the probability that an eavesdropper correctly reconstructs functions of the original plaintext. We illustrate how these bounds can be applied to characterize security properties of symmetric-key encryption schemes, and, in particular, extend security claims based on symbol secrecy to a functional setting.Comment: Submitted to IEEE Transactions on Information Theor

    On the Direct Construction of MDS and Near-MDS Matrices

    Full text link
    The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. Consequently, various methods have been proposed for designing MDS matrices, including search and direct methods. While exhaustive search is suitable for small order MDS matrices, direct constructions are preferred for larger orders due to the vast search space involved. In the literature, there has been extensive research on the direct construction of MDS matrices using both recursive and nonrecursive methods. On the other hand, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer compared to MDS matrices. However, no direct construction method is available in the literature for constructing recursive NMDS matrices. This paper introduces some direct constructions of NMDS matrices in both nonrecursive and recursive settings. Additionally, it presents some direct constructions of nonrecursive MDS matrices from the generalized Vandermonde matrices. We propose a method for constructing involutory MDS and NMDS matrices using generalized Vandermonde matrices. Furthermore, we prove some folklore results that are used in the literature related to the NMDS code
    • …
    corecore