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Abstract—We present a new information-theoretic defi-
nition and associated results, based on list decoding in a
source coding setting. We begin by presenting list-source
codes, which naturally map a key length (entropy) to
list size. We then show that such codes can be analyzed
in the context of a novel information-theoretic metric, ǫ-
symbol secrecy, that encompasses both the one-time pad
and traditional rate-based asymptotic metrics, but, like
most cryptographic constructs, can be applied in non-
asymptotic settings. We derive fundamental bounds forǫ-
symbol secrecy and demonstrate how these bounds can be
achieved with MDS codes when the source is uniformly
distributed. We discuss applications and implementation
issues of our codes.

I. I NTRODUCTION

Classic information-theoretic approaches to secrecy
are concerned with unconditionally secure systems, i.e.
schemes that manage to hide all the bits of a message
from an adversary with unbounded computational re-
sources. It is well known that, for a noiseless setting,
unconditional (i.e. perfect) secrecy can only be attained
when both communicating parties share a random key
with entropy at least as large as the message itself [1]. In
other cases, perfect secrecy can sometimes be achieved
by exploiting particular characteristics of the considered
model, such as when the legitimate communicating party
has a less noisy channel than the eavesdropper (wiretap
channel) [2].

Alternatively, computationally secure cryptosystems
have thrived both from a theoretical and a practical
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perspective. Such systems are based on yet unproven
hardness assumptions, but nevertheless have led to cryp-
tographic schemes that are widely adopted (for an
overview, see [3]). Currently, computationally secure
schemes are used millions of times per day, in ap-
plications that range from online banking transactions
to digital rights management. However, with the ever
increasing amount of data streaming over the Internet
and the need to provide secure connections to mobile
low powered devices, there is still a constant demand
for new and efficient security solutions.

There has been a long exploration of the connection
between coding and cryptography [4], and our work is
inscribed in this school of thought. From a theoretical
perspective, we aim to present a new framework that
allows the application of information theoretic-tools to
analyze a broader set of secrecy schemes that go beyond
the one-time pad and the wiretap model with its varia-
tions. Towards this goal, we define a new metric for an-
alyzing security, namelyǫ-symbol secrecy, which quan-
tifies the uncertainty of specific source symbols given
an encrypted source sequence. This metric subsumes
traditional rate-based information-theoretic measures of
secrecy which, unlike usual cryptographic approaches,
are generally asymptotic. However, our definition is not
asymptotic and, indeed, we provide a construction that
achieves fundamental symbol secrecy bounds, based on
MDS codes, for finite-length sequence.

In order to construct schemes that achieve symbol
secrecy performance bounds, we present the definition
of list-source codes, which are codes that compress a
source sequencebelow its entropy rate. Consequently,
a list-source code is decoded to a list of possible
source sequences instead of a unique source sequence.
Fundamental bounds for list-source codes are derived,
and explicit constructions that achieve such bounds are
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presented using tools from algebraic coding theory.
We show how list-source codes can be used as an

important tool for hiding information with key sizes that
are only a fraction of the entropy of the message. Using
list-source codes, it becomes possible to argue that the
best an adversary can do is to reduce the set of possible
messages to an exponentially sized list with certain prop-
erties, where the size of the list depends on the length of
the key. Since the list has an exponential size, it cannot
be resolved in polynomial time, offering a certain level of
computational security. We will show how this property
can be used to develop hybrid encryption schemes, where
only part of the message needs to be securely encrypted.

Our main practical application of interest is secure
content caching and distribution. We propose a hybrid
encryption scheme based on list-source codes, where
a large fraction of the message can be encoded and
distributed using a key-independent list-source code. The
information necessary to resolve the decoding list, which
can be much smaller than the whole message, is then
encrypted using a secure method. This scheme allows
a significant amount of content to be distributed and
cachedbefore dealing with key generation, distribution
and management issues.

A. Related work

Tools from algebraic coding theory have been widely
used for constructing secrecy schemes [4]. In addition,
the notion of providing security by exploiting the fact
that the adversary has incomplete access to informa-
tion is also central to several secure network coding
schemes and wiretap models. Ozarow and Wyner [5]
introduced the wiretap channel II, where an adversary
can observe a setk of his choice out ofn trans-
mitted symbols, and proved that there exists a code
that achieves perfect secrecy. A generalized version of
this model was investigated by Cai and Yeung in [6],
where they introduce the related problem of designing
an information-theoretically secure linear network code
when an adversary can observe a certain number of edges
in the network. Their results were later extended in [7]–
[10]. A more practical approach was presented by Lima
et al. in [11]. For a survey on the theory of secure
network coding, we refer the reader to [12].

The setting considered in this paper is related to
the wiretap channel II in that a fraction of the source
symbols is hidden from a possible adversary. Oliveiraet
al. investigated in [13] a related setting in the context of
data storage over untrusted networks that do not collude,
introducing a solution based on Vandermonde matrices.
The MDS coding scheme introduced in this paper is

similar to [13], albeit the framework developed here is
more general.

List decoding techniques for channel coding were
first introduced by Elias [14] and Wozencraft [15], with
subsequent work by Shannonet al. [16], [17] and Forney
[18]. Recently, new algorithmic results for list decoding
of channel codes were discovered by Gurusuwami and
Sudan [19]. We refer the reader to [20] for an excellent
survey of list decoding results. List decoding has been
considered in the context of source coding in [21]. The
approach is related to the one presented here, since we
may view a secret key as side information, but [21] do
not consider source coding and list decoding together for
the purposes of security.

B. Communication and threat model

A transmitter (Alice) sends to a legitimate receiver
(Bob) a sequence of lengthn produced by a discrete
sourceX with output alphabetX and probability dis-
tribution pX(·). Both Alice and Bob have access to a
shared secret keyK drawn uniformly and at random
from a discrete alphabetK, such thatH(K) < H(Xn),
and encryption/decryption functionsEnc : Xn ×K → C
and Dec : C × K → Xn, where C is the set of
possible encrypted messages. In addition, Alice commu-
nicates with Bob over a noiseless channel. Alice observes
the source sequenceXn, and transmits an encrypted
messageC = Enc(Xn,K). Bob then recoversXn

by decrypting the message using the key, recovering
X̂n = Dec(C,K). The communication is successful if
X̂n = Xn.

We assume a passive but computationally unbounded
eavesdropper (Eve) that has access to all transmitted
messages from Alice to Bob and knows the functions
Enc(·) andDec(·), but does not know the secret keyK.
Eve’s goal is to gain as much knowledge as possible
about the original source sequence. This is the tradi-
tional framework used in cryptography, and no degraded
assumption is made beyond the shared secret key.

In the remainder of this paper we investigate two main
aspects of this model, described below.

1) Encryption with key entropy smaller than the mes-
sage entropy: We initially analyze how to perform
encryption when the key is smaller than the message.
Towards this goal, we present the definition of list-
source codes (LSCs), together with fundamental bounds,
in section II. Furthermore, practical code constructions
of LSCs are introduced in section III. We present list-
source codes as codes that compress the source sequence
below its entropy rate, and in section III describe how
LSCs can be used in the considered model.
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2) Security analysis and new security metrics for i.i.d.
sources: We analyze the security of schemes based
on LSCs in section IV. In addition, we introduce a
new information-theoretic metric that can be used in
scenarios where perfect secrecy cannot be achieved,
namelyabsolute andǫ-symbol secrecy.

In section V we discuss the extension of LSCs to
Markovian source models, and in section VI we present
applications and practical considerations of the proposed
secrecy scheme. Finally, section VII presents our con-
cluding remarks.

II. L IST DECODING AND SOURCE CODING:
FUNDAMENTAL L IMITS

In this section we present the definition of list-source
codes and derive fundamental bounds. Consider a dis-
crete memoryless sourceX with output alphabetX and
probability distributionpX(·).

Definition 1. A (2nR, |X |nL, n)-list-source code for a
discrete memoryless sourceX consists of an encoding
function fn : Xn → {1, . . . , 2nR} and a list-decoding
functiongn : {1, . . . , 2nR} → P(Xn)\∅, whereP(Xn)
is the power set ofXn and |g(w)|= |X |nL ∀w ∈
{1, . . . , 2nR}.

Note that 0 ≤ L ≤ 1. From an operational point
of view, L is a parameter that determines the size of
the decoded list. For example,L = 0 corresponds
to traditional lossless compression, i.e., each source
sequence is decoded to a unique sequence. Furthermore,
L = 1 represents the trivial case when the decoded list
corresponds toXn.

For a list-source code, an error is declared when a
string generated by a source is not contained in the
corresponding decoded list. The average error probability
is given by

eL(fn, gn) = Pr(Xn /∈ gn(fn(X
n))). (1)

Definition 2. For a given discrete memoryless source
X , the rate list size pair(R,L) is said to beachievable
if for every δ > 0, 0 < ǫ < 1 and sufficiently largen
there exists a sequence of(2nRn , |X |nLn , n)-list-source
codes(fn, gn) such thatRn < R+ δ, |Ln − L|< δ and
eLn

(fn, gn) ≤ ǫ. The rate list region is the closure of
all rate list pairs(R,L).

Definition 3. Therate list function R(L) is the infimum
of all ratesR such that(R,L) is in the rate list region
for a given normalized list size0 ≤ L ≤ 1.

Proposition 1. For any discrete memoryless source X,
the rate list function is bounded below by

R(L) ≥ H(X)− L log|X | . (2)

R

L

H(X)

log|X |

0
0 H(X)

Achievable

1

Fig. 1. Rate list region for normalized list sizeL and code rateR.

Proof: Let δ > 0 be given and(fn, gn) be a
sequence of codes with (normalized) list sizeLn such
that Ln → L and for any0 < ǫ < 1 andn sufficiently
large0 ≤ eL(fn, gn) ≤ ǫ. Then

Pr

[

Xn ∈
⋃

w∈Wn

gn(w)

]

≥ Pr[Xn ∈ gn(fn(X
n))] (3)

≥ 1− ǫ (4)

whereWn = {1, . . . , 2nRn} andRn is the rate of the
code(fn, gn). Using [22, Lemma 2.14]:

1

n
log

(

∑

w∈Wn

|gn(w)|

)

=
1

n
log
(

2nRn |X |nLn

)

= Rn + Ln log|X |

≥
1

n
log

∣

∣

∣

∣

∣

⋃

w∈Wn

gn(w)

∣

∣

∣

∣

∣

≥ H(X)− δ (5)

if n ≥ n0(δ, ǫ, |X |). Since this holds for anyδ > 0,
it follows that R(L) ≥ H(X) − L log|X | for all n
sufficiently large.

Remark 1. Achievability of the bound (2) will be shown
through an explicit design using linear codes in the next
section, so the inequality can be proved to be an equality.

III. C ODE DESIGN

A. Trivial approach

Assume that the sourceX is uniformly distributed
in Fq, i.e., Pr(X = x) = 1/q ∀x ∈ Fq. In this case
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R(L) = (1−L) log q. A trivial scheme for achieving the
list-source boundary is the following. Consider a source
sequenceXn = (Xp, Xs), whereXp denotes the first
p = n− ⌊Ln⌋ symbols ofXn andXs denotes the last
s = ⌊Ln⌋ symbols. Encoding is done by discardingXs,
and mapping the prefixXp to a binary codewordY nR

of lengthnR = ⌈n− ⌊Ln⌋ log q⌉ bits.
For decoding, the codewordY nR is mapped toXp,

and the scheme outputs a list of sizeqs composed
by Xp concatenated with all possible combinations of
suffixes of lengths. Clearly, for n sufficiently large,
R ≈ (1−L) log q, and we achieve the optimal list-source
size tradeoff.

The previous scheme is completely inadequate for
security purposes. An adversary that observes the binary
codewordY nR can uniquely identify the firstp symbols
of the source message, and the uncertainty is concen-
trated over the lasts symbols. Ideally, assuming that
all source symbols are of equal importance, we should
spread the uncertainty over all symbols of the message.
More precisely, given the encodingf(Xn), a “good” se-
curity scheme would provideI(Xi; f(X

n)) ≤ ǫ ≪ log q
for 1 ≤ i ≤ n. Of course, we can naturally extend this
notion for groups of symbols or functions over input
symbols1. This idea will be captured in the definition of
symbol secrecy, introduced in section IV.

B. A construction based on linear codes

Let X be an i.i.d. source withX ∈ X with
entropy H(X), and Sn a source code with encoder
sn : Xn → F

mn

q and decoderrn : F
mn

q → Xn.
Furthermore, letC be a(mn, kn, d) linear code overFq

with an (mn − kn) ×mn parity check matrixHn (i.e.
c ∈ C ⇔ Hnc = 0). Consider the following scheme,
where kn = nLn log|X |/log q for 0 ≤ Ln ≤ 1 and
Ln → L as n → ∞. To simplify notation, we assume
without loss of generality thatkn is an integer.

Scheme 1.Encoding: Let Xn be the sequence gener-
ated by the source. Compute the syndromeSmn−kn =
Hnsn(X

n) and map each syndrome to a distinct se-
quence ofnR = ⌈(mn − kn) log q⌉ bits, denoted by
Y nR.

Decoding: Map the binary codewordY nR to the
corresponding syndromeSmn−kn . Outputrn(xmn) for
eachxmn in the coset ofHn corresponding toSmn−kn .

Proposition 2. If Sn is asymptotically optimal for source
X , i.e. mn/n → H(X)/log q, scheme 1 achieves the
optimal list-source tradeoff point R(L) for an i.i.d.
source, where R(·) is the rate list function.

1This idea is tightly related to the concept of hard core predicates
and semantic security in cryptography.

Proof: Since the size of each coset corresponding
to a syndrome aSmn−kn is exactlyqkn , the normalized
list size isLn = (kn log q)/(n log|X |) → L. Denoting
mn/n = H(X)/log q+δn, whereδn → 0, it follows that
is R = ⌈(mn − kn) log q⌉/n = ⌈(H(X) + δn log q)n−
Lnn log|X |⌉/n, which is arbitrarily close to the rate in
(2) for sufficiently largen.

The source coding scheme used in the proof of Propo-
sition 2 can be any asymptotically optimal scheme. Note
that if the sourceX is uniform, and assuming without
loss of generality thatLn = L and thatLn is an integer,
any message in the coset ofC determined byS(1−L)n is
equally likely. Hence,H(Xn|S(1−L)n) = qLn. Scheme
1 provides a systematic way of hiding information, and
we can take advantage of the properties of the underlying
linear code to make precise assertions regarding the
“information leakage” of the scheme.

With the syndrome in hand, how can we recover the
rest of the message? One possible approach is to find
a k × n matrix D that has full rank such that the rows
of D and H form a basis ofFn

q . Such a matrix can
be easily found, for example, using the Gram-Schmidt
process with the rows ofH as a starting point. Then we
simply calculateTLn = DXn and forwardTLn to the
receiver. The receiver can then invert the system

(

H

D

)

Xn =

(

S(1−L)n

TLn

)

, (6)

and recover the original sequenceXn. This property
allows list-source codes to be deployed in practice using
well known linear code constructions, such as Reed-
Solomon or LDPC.

Remark 2. This approach is valid for general linear
spaces, and holds for any pair of full rank matricesH and
D with dimensions(n− k)×n andk×n, respectively,
such that rank([HT

D
T ]T ) = n. However, here we adopt

the nomenclature of linear codes since we make use of
known code constructions to design secrecy schemes in
the following sections.

C. A secure communication scheme based on list-source
codes

In this section we present a general description of a
two-phase secure communication scheme for the model
introduced in section I-B, presented in terms of the list-
source code constructions derived using linear codes.
Note that this scheme can be easily extended to any
list-source code by using the corresponding encod-
ing/decoding functions instead of multiplication by par-
ity check matrices.

We assume that Alice and Bob have access to a
encryption/decryption scheme(Enc′,Dec′) that is used
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with the shared secret keyK and is sufficiently secure
against the adversary. This scheme can be, for example,
a one-time pad. The encryption/decryption procedure is
performed as follows, and will be used as components
of the overall encryption scheme(Enc,Dec) described
below.

Scheme 2.Input: The source encoded sequenceXn ∈
F
n
q , parity check matrixH of a linear code inFn

q , a full-
rankk×n matrixD such that rank([HT

D
T ]) = n, and

encryption/decryption functions(Enc′,Dec′).
Encryption (Enc):
Phase I (pre-caching): Alice generatesSn−k = HXn

and sends to Bob.
Phase II (send encrypted data): Alice generatesEk =
Enc

′(DXn,K) and sends to Bob.
Decryption (Dec): Bob calculateDXn = Dec

′(Ek) and
recoverXn from Sn−k andDXn.

Assuming that(Enc′,Dec′) is secure, the security of
scheme 2 reduces to the security of the underlying list-
source code (i.e. scheme 1). In practice, the encryp-
tion/decryption functions(Enc′,Dec′) may depend on
a secret or public/private key, as long as it provide
sufficient security for the desired application. In addition,
assuming that the source sequence is uniform and i.i.d.
in Fn

q , we can use MDS codes to make strong security
guarantees, as described in the next section. In this
case, an adversary that observesSn−k cannot inferany
information about any set ofk symbols of the original
message.

Note that this scheme has atunable level of secrecy:
The amount of data sent in phase I and phase II can
be appropriately selected to match the properties of the
encryption scheme available, the size of the key length,
and the desired level of secrecy. Furthermore, when the
encryption procedure has a higher computational cost
than the list-source encoding/decoding operations, list-
source codes can be used to reduce the total number of
operations required by allowing encryption of a smaller
portion of the message (phase II).

IV. N EW METRICS FOR SECURITY ANALYSIS

We introduce a new information-theoretic metric for
security calledǫ-symbol secrecy. This metric can be
used to characterize the properties of security schemes
that do not provide absolute secrecy (such as in scheme
2). Given a source sequenceXn and its corresponding
encryptionY , ǫ-symbol secrecy is the largest fraction
t/n such that at mostǫ bits can be inferred from any
t-symbol subsequence ofXn. We derive a fundamental
bound for ǫ-symbol secrecy, and show that it can be
achieved using MDS codes forǫ = 0 and uniform i.i.d.

sources. Before presenting the definition, we make a
few comments on notation and briefly review the threat
model.

A. Notation

Let Cn be a sequence of codes for a discrete memo-
ryless sourceX with probability distributionp(x) that
achieves a rate list pair(R,L). Furthermore, letY nRn

be the corresponding codewordfn(Xn) created byCn.
Denote byIn(t) the set of all subsets of{1, . . . , n} of
size t, i.e. J ∈ In(t) ⇔ J ⊆ {1, . . . , n} and |J |= t.
In addition, we denote byX(J ) the set of symbols of
Xn indexed by the elements in the setJ ⊆ {1, . . . , n}.

As discussed in section I-B, we assume a passive
but computationally unbounded adversary that only has
access to the list-source encoded messagefn(X

n) =
Y nRn . Based on the observation ofY nRn , the adversary
will attempt to determine what is the original message.
In addition, we assume that the source statistics and
the list-source code used are universally known, i.e. an
adversary has access to the distributionpXn(Xn) of
the symbol sequences produced by the source and the
sequence of codesCn. We use the standard information-
theoretic approach of measuring the amount of informa-
tion that an adversary can gain of a specific sequence of
source symbolsX(J ) by observingY nRn as the mutual
informationI(X(J );Y nRn).

B. Symbol Secrecy

The following definition introduces two security met-
rics, namelyabsolute symbol secrecy and ǫ-symbol se-
crecy.

Definition 4. We defineµ0(Cn) as theabsolute symbol
secrecy of a codeCn as

µ0(Cn) = max

{

t

n
: I(X(J );Y nRn) = 0, ∀J ∈ In(t)

}

.

(7)
The absolute symbol secrecyµ0 of a sequence of codes
Cn is:

µ0 = lim inf
n→∞

µ0(Cn). (8)

Furthermore, we define theǫ-symbol secrecy µǫ of a code
Cn as

µǫ(Cn) = max

{

t

n
:
1

t
I(X(J );Y nRn) ≤ ǫ ∀J ∈ In(t)

}

,

(9)
and theǫ-symbol secrecy of a sequence of codesCn as

µǫ = lim inf
n→∞

µǫ(Cn), (10)

whereǫ < H(X).
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Proposition 3. Let Cn be a sequence of list-source codes
that achieves a rate-list pair (R,L) and an ǫ-symbol

secrecy of µǫ. Then 0 ≤ µǫ ≤ min
{

L log|X |
H(X)−ǫ

, 1
}

.

Proof: We denoteµǫ(Cn) = µǫ,n. Note that

I(X(J );Y nRn) = H(X(J ))−H(X(J )|Y nRn)

= nµǫ,nH(X)−H(X(J )|Y nRn)

≤ nµǫ,nǫ.

Therefore

µǫ,n(H(X)− ǫ) ≤
1

n
H(X(J )|Y nRn)

≤ Ln log|X |.

The result follows by takingn → ∞.
The previous result bounds the amount of information

an adversary gains about particular source symbols by
observing a list-source encoded message. In particular,
for ǫ = 0, we find a meaningful bound on what is the
largest fraction of input symbols that isperfectly hidden.
A simple upper-bound for the maximum average amount
of information that an adversary can gain from a message
encoded with any source codeCn with symbol secrecy
uǫ,n is given below.

Proposition 4. For any code Cn for a discrete memory-
less source X and any ǫ such that 0 ≤ ǫ ≤ H(X), we
have

1

n
I(Xn;Y nRn) ≤ H(X)− µǫ,n(H(X)− ǫ), (11)

where µǫ,n = µǫ(Cn).

Proof: Let µǫ,n = t/n, J ∈ In(t) and J̄ =
{1, . . . , n}\J . Then

1

n
I(Xn;Y nRn) ≤

t

n

(

ǫ+
1

t
I(X(J̄ );Y nRn |X(J ))

)

(12)

≤ µǫ,nǫ+
(n− t)

n
H(X) (13)

= H(X)− µǫ,n(H(X)− ǫ). (14)

The next proposition relates the rate-list function with
ǫ-symbol secrecy through the upper bound in proposition
3.

Proposition 5. If a sequence of list-source codes Cn
achieves a point (R′, L) with µǫ =

L log|X |
H(X)−ǫ

for some ǫ,
where R′ = limn→∞

1
n
H(Y nRn), then R′ = R(L).

Proof: Assume thatCn satisfies the conditions in the
proposition andδ > 0 is given. Then forn sufficiently

large, we have from (11):

1

n
H(Y nRn) =

1

n
I(Xn;Y nRn)

≤ H(X)− µǫ(H(X)− ǫ) + δ

= H(X)− L log|X |+δ.

Since this holds for anyδ, thenR′ ≤ H(X)−L log|X |.
However, from proposition 1,R′ ≥ H(X) − L log|X |,
and the result follows.

C. A scheme based on MDS codes

We now prove that for a uniform i.i.d. sourceX in
Fq, using scheme 1 with an MDS parity check matrix
H achievesµ0. Since the source is uniform and i.i.d.,
no source coding is used.

Proposition 6. If H is the parity check matrix of an
(n, k, d) MDS and the source Xn is uniform and i.i.d.,
then Scheme 1 achieves the upper bound µ0 = L, where
L = k/n.

Proof: Let H be the parity check matrix of a
(n, k, n−k+1) MDS codeC overFq, and letx ∈ C. Fix
a setJ ∈ In(k) of k positions ofx, denotedx(J ). Since
the minimum distance ofC is n− k + 1, for any other
codeword inz ∈ C we havez(J ) 6= x

(J ). Denoting by
C(J ) = {x(J ) ∈ F

k
q : x ∈ C}, then |C(J )|= |C|= qk.

Therefore,C(J ) contains all possible combinations ofk
symbols. Since this property also holds for any coset of
H, the result follows.

V. L IST-SOURCE CODES FOR GENERAL SOURCE

MODELS

The previous results hold for i.i.d. source models.
However, for more general sources the analysis becomes
significantly more convoluted, since multiple list-source
encoded messages can reveal information about each
other. Considering that encryption is performed over
multiple blocks of source symbols, the list size will not
necessarily grow if these block are correlated.

In general, given an outputX = X1, . . . , Xn of n
correlated source symbols, and using scheme 1, what
is observed by an eavesdropper is the coset valued
sequence of random elements{H(sn(X))}, H being the
parity check matrix. SinceX is a correlated source of
symbols, there is no a priori reason to expect that the
coset valued process will not be correlated. For example
if X forms a Markov chain, then the coset valued process
is a function of a Markov chain; although it will not,
in general, form a Markov chain itself, it will still
have correlations. These correlations could effectively
reduce the list size that an eavesdropper must search and,
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consequently, reduce the effectiveness of the scheme.
Reducing or eliminating correlations in the coset valued
process would counteract the impact of this vulnerability.

Different approaches can be taken to resolve this
issue. In general, the key to reducing the effect of
the correlation between codewords is to encode larger
block lengths. More precisely, letX1,X2, . . . ,XN

be N blocks of symbols produced by a Markov
source, such thatXi ∈ Xn and p(X1, . . . ,XN ) =
p(X1)p(X2|X1) . . . p(XN |XN−1). Instead of encoding
each block individually, the transmitter can compute
Y

nNR = f(X1, . . . ,XN ).
The previous approach has the disadvantage of requir-

ing long block lengths and possibly high implementation
complexity. We note, however, that the encoding pro-
cedure over multiple blocks does not necessarily have
to be performed independently. For example, one pos-
sible approach for overcoming edge-effect correlations
between codewords is to defineY1 = f(X1,X2),Y2 =
f(X2,X3), . . . , and so forth. This approach reduces
the edge effects of correlation between codewords, in
particular when the individual sequencesXi are already
significantly long.

We note that, when probabilistic encryption [3] is
required over multiple blocks, the source encoded sym-
bols in scheme 1 can be combined with the output
of a pseudorandom number generator (PRG) before
being multiplied by the parity check matrix. This would
provide the necessary randomization of the output. The
initial seed of the PRG can then be transmitted to the
legitimate receiver in phase II of scheme 2.

VI. A PPLICATIONS AND PRACTICAL

CONSIDERATIONS

The protocol outline presented in scheme 2 is useful
in different practical scenarios, which are discussed in
the following sections. Most of the advantages of the
suggested scheme stem from the fact that list-source
codes are key-independent, allowing content to be dis-
tributed when a key distribution infrastructure is not yet
established, and providing an additional level of security
if keys are compromised before phase II in scheme 2.

A. Content pre-caching

As hinted earlier, list-source codes provide a secure
mechanism for content pre-caching when a key infras-
tructure has not yet been established. A large fraction
of the data can be list-source coded and securely trans-
mitted before the termination of the key distribution
protocol. This is particularly significant in large networks
with hundreds of mobile nodes, where key management
protocols can require a significant amount of time to

complete [23]. Scheme 2 circumvents the communi-
cation delays incurred by key compromise detection,
revocation and redistribution by allowing data to be
efficiently distributed concurrently with the key distri-
bution protocol, while maintaining a level of security
determined by the underlying list-source code.

B. Application to key distribution protocols

List-source codes can also provide additional robust-
ness to key compromise. If the secret key is compro-
mised before phase II of scheme 2, the data will still
be as secure as the underlying list-source code. Even
if a (computationally unbounded) adversary has perfect
knowledge of the key, until the last part of the data is
transmitted the best he can do is reduce the number
of possible inputs to an exponentially large list. In
contrast, if a stream cipher based on a pseudo-random
number generator were used and the initial seed was
leaked to an adversary, all the data transmitted up to
the point where the compromise was detected would
be vulnerable. The use of list-source codes provide an
additional, information-theoretic level of security to the
data up to the point where the last fraction of the message
is transmitted. This also allows decisions as to which
receivers will be allowed to decrypt the data can be
delayed until the very end of the transmission, providing
more time for detection of unauthorized receivers and
allowing a larger flexibility in key distribution.

In addition, if the level of security provided by the list-
source code is considered sufficient and the key is com-
promised before phase II, the key can be redistributed
without the need of retransmitting the entire data. As
soon as the keys are reestablished, the transmitter simply
encrypts the remaining part of the data in phase II with
the new key.

C. Additional layer of securi ty

We also highlight that list-source codes can be used
to provide an additional layer of security to the underly-
ing encryption scheme. The message can be list-source
coded after encryption and transmitted in two phases,
as in scheme 2. As argued in the previous point, this
provides additional robustness against key compromise,
in particular when a compromised key can reveal a large
amount of information about an incomplete message
(e.g. stream ciphers). Consequently, list-source codes are
a simple, practical way of augmenting the security of
current encryption schemes.

One example application is to combine list-source
codes with stream ciphers, as noted in section V. The
source-coded message can be initially encrypted using
a pseudorandom number generator initialized with a
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randomly selected seed, and then list-source coded. The
initial random seed would be part of the encrypted
message sent in the final transmission phase. This setup
has the advantage of augmenting the security of the
underlying stream cipher, and provides randomization to
the list-source coded message. In particular, if the LSC is
based on MDS codes and assuming that the distribution
of the plaintext is nearly uniform, strong information-
theoretic symbol secrecy guarantees can be made about
the transmitted data, as discussed in section IV. Even if
the underlying PRG is compromised, the message would
still be secure.

D. Adjustable level of secrecy

List-source codes provide a tunable level of secrecy,
i.e. the amount of security provided by the scheme can
be adjusted according to the application of interest. This
can be done by appropriately selecting the size of the
list (L) of the underlying code, which determines the
amount of uncertainty an adversary will have regarding
the input message. In the proposed implementation using
linear codes, this corresponds to choosing the size of the
parity check matrixH, or, analogously, the parameters of
the underlying error-correcting code. In terms of scheme
2, a larger (respectively smaller) value ofL will lead to
a smaller (larger) list-source coded message in phase I
and a larger (smaller) encryption burden in phase II.

VII. C ONCLUSIONS

In this paper we introduced the concept of list-source
codes, which are codes that compress a source below
its entropy rate. We derived fundamental bounds for the
rate list region, and provided code constructions that
achieve these bounds. List-source codes are a useful
tool to understand how to perform encryption when the
(random) key length is smaller that the message entropy.
In a nutshell, when the key is small, we can reduce an
adversary’s uncertainty to a near-uniformly distributed
list of possible source sequences with an exponential (in
terms of the key length) number of elements by using
list-source codes. We also demonstrated how list-source
codes can be implemented using standard linear codes.

Furthermore, a new information-theoretic metric of
secrecy was presented, namelyǫ-symbol secrecy, which
characterizes the amount of information leaked about
specific symbols of the source given an encoded version
of the message. We derived fundamental bounds forǫ-
symbol secrecy, and showed how these bounds can be
achieved using MDS codes when the source is uniformly
distributed. Finally, we discussed how list-source codes
can be applied to practical encryption schemes.
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