117,086 research outputs found

    Improving random number generators by chaotic iterations. Application in data hiding

    Full text link
    In this paper, a new pseudo-random number generator (PRNG) based on chaotic iterations is proposed. This method also combines the digits of two XORshifts PRNGs. The statistical properties of this new generator are improved: the generated sequences can pass all the DieHARD statistical test suite. In addition, this generator behaves chaotically, as defined by Devaney. This makes our generator suitable for cryptographic applications. An illustration in the field of data hiding is presented and the robustness of the obtained data hiding algorithm against attacks is evaluated.Comment: 6 pages, 8 figures, In ICCASM 2010, Int. Conf. on Computer Application and System Modeling, Taiyuan, China, pages ***--***, October 201

    Survey on Reversible Data Hiding in Encrypted Images Using POB Histogram Method

    Get PDF
    This paper describes a survey on reversible data hiding in encrypted images. Data hiding is a process to embed useful data into cover media. Data invisibility is its major requirement. Data hiding can be done in audio, video, image, text, and picture. Here use an image for data hiding especially digital images and existing method (Histogram Block Shift Base Method) HBSBM or POB. Now a day's reversible data hiding in encrypted images is in use due to its excellent property which is original cover image can be recovered with no loss after extraction of the embedded data. Also, it protects the original data. According to the level and kind of application one or more data hiding methods is used. Data hiding can be done in audio, video, text, and image and other forms of information. Some data hiding techniques emphasize on digital image security, some on the robustness of digital image hiding process while other's main focus is on imperceptibility of a digital image. The capacity of digital information which has to hide is also the main concern in some of the applications. The objective of some of the papers mentioned below is to achieve two or more than two parameters i.e. Security, robustness, imperceptibility and capacity but some of the parameters are trade-off which means only one can be achieved on the cost of other. So the data hiding techniques aiming to achieve maximum requirements i.e. security, robustness, capacity, imperceptibility etc. and which can be utilized in the larger domain of applications is desired. Related work for techniques used for data hiding in a digital image is described in this paper

    Quantization Watermarking for Joint Compression and Data Hiding Schemes

    Get PDF
    International audienceEnrichment and protection of JPEG2000 images is an important issue. Data hiding techniques are a good solution to solve these problems. In this context, we can consider the joint approach to introduce data hiding technique into JPEG2000 coding pipeline. Data hiding consists of imperceptibly altering multimedia content, to convey some information. This process is done in such a way that the hidden data is not perceptible to an observer. Digital watermarking is one type of data hiding. In addition to the imperceptibility and payload constraints, the watermark should be robust against a variety of manipulations or attacks. We focus on trellis coded quantization (TCQ) data hiding techniques and propose two JPEG2000 compression and data hiding schemes. The properties of TCQ quantization, defined in JPEG2000 part 2, are used to perform quantization and information embedding during the same time. The first scheme is designed for content description and management applications with the objective of achieving high payloads. The compression rate/imperceptibility/payload trade off is our main concern. The second joint scheme has been developed for robust watermarking and can have consequently many applications. We achieve the better imperceptibility/robustness trade off in the context of JPEG2000 compression. We provide some experimental results on the implementation of these two schemes

    A Multistage High Capacity Reversible Data Hiding Technique Without Overhead Communication

    Get PDF
    Reversible Data Hiding(RDH) has been extensively investigated, recently, due to its numerous applications in the field of defence, medical, law enforcement and image authentication. However, most of RDH techniques suffer from low secret data hiding capacity and communication overhead. For this, multistage high-capacity reversible data hiding technique without overhead is proposed in this manuscript. Proposed reversible data hiding approach exploits histogram peaks for embedding the secret data along with overhead bits both in plain and encrypted domain. First, marked image is obtained by embedding secret data in the plain domain which is further processed using affine cipher maintaining correlation among the pixels. In second stage, overhead bits are embedded in the encrypted marked image. High embedding capacity is achieved through exploiting histogram peak for embedding multiple bits of secret data. Proposed approach is experimentally validated on different datasets and results are compared with the state-of-the-art techniques over different images
    corecore