6,185 research outputs found

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed

    Generalised Mersenne Numbers Revisited

    Get PDF
    Generalised Mersenne Numbers (GMNs) were defined by Solinas in 1999 and feature in the NIST (FIPS 186-2) and SECG standards for use in elliptic curve cryptography. Their form is such that modular reduction is extremely efficient, thus making them an attractive choice for modular multiplication implementation. However, the issue of residue multiplication efficiency seems to have been overlooked. Asymptotically, using a cyclic rather than a linear convolution, residue multiplication modulo a Mersenne number is twice as fast as integer multiplication; this property does not hold for prime GMNs, unless they are of Mersenne's form. In this work we exploit an alternative generalisation of Mersenne numbers for which an analogue of the above property --- and hence the same efficiency ratio --- holds, even at bitlengths for which schoolbook multiplication is optimal, while also maintaining very efficient reduction. Moreover, our proposed primes are abundant at any bitlength, whereas GMNs are extremely rare. Our multiplication and reduction algorithms can also be easily parallelised, making our arithmetic particularly suitable for hardware implementation. Furthermore, the field representation we propose also naturally protects against side-channel attacks, including timing attacks, simple power analysis and differential power analysis, which is essential in many cryptographic scenarios, in constrast to GMNs.Comment: 32 pages. Accepted to Mathematics of Computatio

    Reconfigurable Architecture for Elliptic Curve Cryptography Using FPGA

    Get PDF
    The high performance of an elliptic curve (EC) crypto system depends efficiently on the arithmetic in the underlying finite field. We have to propose and compare three levels of Galois Field , , and . The proposed architecture is based on Lopez-Dahab elliptic curve point multiplication algorithm, which uses Gaussian normal basis for field arithmetic. The proposed is based on an efficient Montgomery add and double algorithm, also the Karatsuba-Ofman multiplier and Itoh-Tsujii algorithm are used as the inverse component. The hardware design is based on optimized finite state machine (FSM), with a single cycle 193 bits multiplier, field adder, and field squarer. The another proposed architecture is based on applications for which compactness is more important than speed. The FPGA’s dedicated multipliers and carry-chain logic are used to obtain the small data path. The different optimization at the hardware level improves the acceleration of the ECC scalar multiplication, increases frequency and the speed of operation such as key generation, encryption, and decryption. Finally, we have to implement our design using Xilinx XC4VLX200 FPGA device

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    FlowNet: Learning Optical Flow with Convolutional Networks

    Full text link
    Convolutional neural networks (CNNs) have recently been very successful in a variety of computer vision tasks, especially on those linked to recognition. Optical flow estimation has not been among the tasks where CNNs were successful. In this paper we construct appropriate CNNs which are capable of solving the optical flow estimation problem as a supervised learning task. We propose and compare two architectures: a generic architecture and another one including a layer that correlates feature vectors at different image locations. Since existing ground truth data sets are not sufficiently large to train a CNN, we generate a synthetic Flying Chairs dataset. We show that networks trained on this unrealistic data still generalize very well to existing datasets such as Sintel and KITTI, achieving competitive accuracy at frame rates of 5 to 10 fps.Comment: Added supplementary materia

    Advanced digital SAR processing study

    Get PDF
    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented

    Algorithms and Architectures for Secure Embedded Multimedia Systems

    Get PDF
    Embedded multimedia systems provide real-time video support for applications in entertainment (mobile phones, internet video websites), defense (video-surveillance and tracking) and public-domain (tele-medicine, remote and distant learning, traffic monitoring and management). With the widespread deployment of such real-time embedded systems, there has been an increasing concern over the security and authentication of concerned multimedia data. While several (software) algorithms and hardware architectures have been proposed in the research literature to support multimedia security, these fail to address embedded applications whose performance specifications have tighter constraints on computational power and available hardware resources. The goals of this dissertation research are two fold: 1. To develop novel algorithms for joint video compression and encryption. The proposed algorithms reduce the computational requirements of multimedia encryption algorithms. We propose an approach that uses the compression parameters instead of compressed bitstream for video encryption. 2. Hardware acceleration of proposed algorithms over reconfigurable computing platforms such as FPGA and over VLSI circuits. We use signal processing knowledge to make the algorithms suitable for hardware optimizations and try to reduce the critical path of circuits using hardware-specific optimizations. The proposed algorithms ensures a considerable level of security for low-power embedded systems such as portable video players and surveillance cameras. These schemes have zero or little compression losses and preserve the desired properties of compressed bitstream in encrypted bitstream to ensure secure and scalable transmission of videos over heterogeneous networks. They also support indexing, search and retrieval in secure multimedia digital libraries. This property is crucial not only for police and armed forces to retrieve information about a suspect from a large video database of surveillance feeds, but extremely helpful for data centers (such as those used by youtube, aol and metacafe) in reducing the computation cost in search and retrieval of desired videos

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided
    corecore