18,369 research outputs found

    Towards a real-time microscopic emissions model

    Get PDF
    This article presents a new approach to microscopic road traffic exhaust emission modelling. The model described uses data from the SCOOT demand-responsive traffic control system implemented in over 170 cities across the world. Estimates of vehicle speed and classification are made using data from inductive detector loops located on every SCOOT link. This data feeds into a microscopic traffic model to enable enhanced modelling of the driving modes of vehicles (acceleration, deceleration, idling and cruising). Estimates of carbon monoxide emissions are made by applying emission factors from an extensive literature review. A critical appraisal of the development and validation of the model is given before the model is applied to a study of the impact of high emitting vehicles. The article concludes with a discussion of the requirements for the future development and benefits of the application of such a model

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    A Real-time Nonlinear Model Predictive Controller for Yaw Motion Optimization of Distributed Drive Electric Vehicles

    Get PDF
    This paper proposes a real-time nonlinear model predictive control (NMPC) strategy for direct yaw moment control (DYC) of distributed drive electric vehicles (DDEVs). The NMPC strategy is based on a control-oriented model built by integrating a single track vehicle model with the Magic Formula (MF) tire model. To mitigate the NMPC computational cost, the continuation/generalized minimal residual (C/GMRES) algorithm is employed and modified for real-time optimization. Since the traditional C/GMRES algorithm cannot directly solve the inequality constraint problem, the external penalty method is introduced to transform inequality constraints into an equivalently unconstrained optimization problem. Based on the Pontryagin’s minimum principle (PMP), the existence and uniqueness for solution of the proposed C/GMRES algorithm are proven. Additionally, to achieve fast initialization in C/GMRES algorithm, the varying predictive duration is adopted so that the analytic expressions of optimally initial solutions in C/GMRES algorithm can be derived and gained. A Karush-Kuhn-Tucker (KKT) condition based control allocation method distributes the desired traction and yaw moment among four independent motors. Numerical simulations are carried out by combining CarSim and Matlab/Simulink to evaluate the effectiveness of the proposed strategy. Results demonstrate that the real-time NMPC strategy can achieve superior vehicle stability performance, guarantee the given safety constraints, and significantly reduce the computational efforts

    iTETRIS: An Integrated Wireless and Traffic Platform for Real-Time Road Traffic Management Solutions

    Get PDF
    Wireless vehicular cooperative systems have been identified as an attractive solution to improve road traffic management, thereby contributing to the European goal of safer, cleaner, and more efficient and sustainable traffic solutions. V2V-V2I communication technologies can improve traffic management through real-time exchange of data among vehicles and with road infrastructure. It is also of great importance to investigate the adequate combination of V2V and V2I technologies to ensure the continuous and costefficient operation of traffic management solutions based on wireless vehicular cooperative solutions. However, to adequately design and optimize these communication protocols and analyze the potential of wireless vehicular cooperative systems to improve road traffic management, adequate testbeds and field operational tests need to be conducted. Despite the potential of Field Operational Tests to get the first insights into the benefits and problems faced in the development of wireless vehicular cooperative systems, there is yet the need to evaluate in the long term and large dimension the true potential benefits of wireless vehicular cooperative systems to improve traffic efficiency. To this aim, iTETRIS is devoted to the development of advanced tools coupling traffic and wireless communication simulators

    Origin–destination matrices from smartphone apps for bus networks

    Get PDF
    The knowledge of passenger flows between each origin–destination (OD) pair is a main requirement in public transport for service planning, design, operation, and monitoring, and is represented by OD matrices. Although they can be determined by traditional approaches (e.g., surveys, ride-check counts, and/or smartcard-based methods), the availability of new technologies and the proliferation of portable devices triggers an emerging interest in building OD matrices from the apps of bus operators. This research proposes the first framework for the estimation of OD matrices on transit networks by processing smartphone app call detail records (SACDRs). The framework is experimentally tested on a sample of 30 workdays of an Italian bus operator. The results are represented by easy-to-read control dashboards based on maps, which help quantify and visualise the OD matrices in the metropolitan area of Cagliari (Italy). The experimentation shows that the framework can properly estimate the number of trips for both origin and destination w.r.t. OD matrices built from household surveys: the mean absolute error is on average lower than five movements for 90% of the origins and 85% of the destinations

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible

    Developing Sampling Strategies and Predicting Freeway Travel Time Using Bluetooth Data

    Get PDF
    Accurate, reliable, and timely travel time is critical to monitor transportation system performance and assist motorists with trip-making decisions. Travel time is estimated using the data from various sources like cellular technology, automatic vehicle identification (AVI) systems. Irrespective of sources, data have characteristics in terms of accuracy and reliability shaped by the sampling rate along with other factors. As a probe based AVI technology, Bluetooth data is not immune to the sampling issue that directly affects the accuracy and reliability of the information it provides. The sampling rate can be affected by the stochastic nature of traffic state varying by time of day. A single outlier may sharply affect the travel time. This study brings attention to several crucial issues - intervals with no sample, minimum sample size and stochastic property of travel time, that play pivotal role on the accuracy and reliability of information along with its time coverage. It also demonstrates noble approaches and thus, represents a guideline for researchers and practitioner to select an appropriate interval for sample accumulation flexibly by set up the threshold guided by the nature of individual researches’ problems and preferences. After selection of an appropriate interval for sample accumulation, the next step is to estimate travel time. Travel time can be estimated either based on arrival time or based on departure time of corresponding vehicle. Considering the estimation procedure, these two are defined as arrival time based travel time (ATT) and departure time based travel time (DTT) respectively. A simple data processing algorithm, which processed more than a hundred million records reliably and efficiently, was introduced to ensure accurate estimation of travel time. Since outlier filtering plays a pivotal role in estimation accuracy, a simplified technique has proposed to filter outliers after examining several well-established outlier-filtering algorithms. In general, time of arrival is utilized to estimate overall travel time; however, travel time based on departure time (DTT) is more accurate and thus, DTT should be treated as true travel time. Accurate prediction is an integral component of calculating DTT, as real-time DTT is not available. The performances of Kalman filter (KF) were compared to corresponding modeling techniques; both link and corridor based, and concluded that the KF method offers superior prediction accuracy in link-based model. This research also examined the effect of different noise assumptions and found that the steady noise computed from full-dataset leads to the most accurate prediction. Travel time prediction had a 4.53% mean absolute percentage of error due to the effective application of KF

    A preliminary safety evaluation of route guidance comparing different MMI concepts

    Get PDF

    A review of travel and arrival-time prediction methods on road networks: classification, challenges and opportunities

    Get PDF
    Transportation plays a key role in today’s economy. Hence, intelligent transportation systems have attracted a great deal of attention among research communities. There are a few review papers in this area. Most of them focus only on travel time prediction. Furthermore, these papers do not include recent research. To address these shortcomings, this study aims to examine the research on the arrival and travel time prediction on road-based on recently published articles. More specifically, this paper aims to (i) offer an extensive literature review of the field, provide a complete taxonomy of the existing methods, identify key challenges and limitations associated with the techniques; (ii) present various evaluation metrics, influence factors, exploited dataset as well as describe essential concepts based on a detailed analysis of the recent literature sources; (iii) provide significant information to researchers and transportation applications developer. As a result of a rigorous selection process and a comprehensive analysis, the findings provide a holistic picture of open issues and several important observations that can be considered as feasible opportunities for future research directions
    • …
    corecore