26,979 research outputs found

    Nanoscale β\beta-Nuclear Magnetic Resonance Depth Imaging of Topological Insulators

    Get PDF
    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein we present a non-invasive depth-profiling technique based on β\beta-NMR spectroscopy of radioactive 8^8Li+^+ ions that can provide "one-dimensional imaging" in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the 8^8Li nuclear resonance near the surface and 10 nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological non-trivial characteristics that affect the electron-nuclear hyperfine field, the metallic shift and magnetic order. These nanoscale variations in β\beta-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials.Comment: 46 pages, 12 figures in Proc. Natl. Aca. Sci. USA (2015) Published online - early editio

    Updates in metabolomics tools and resources: 2014-2015

    Get PDF
    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources—in the form of tools, software, and databases—is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table

    Nuclear Physics for Cultural Heritage

    Get PDF
    Nuclear physics applications in medicine and energy are well known and widely reported. Less well known are the many important nuclear and related techniques used for the study, characterization, assessment and preservation of cultural heritage. There has been enormous progress in this field in recent years and the current review aims to provide the public with a popular and accessible account of this work. The Nuclear Physics Division of the EPS represents scientists from all branches of nuclear physics across Europe. One of its aims is the dissemination of knowledge about nuclear physics and its applications. This review is led by Division board member Anna Macková, Head of the Tandetron Laboratory at the Nuclear Physics Institute of the Czech Academy of Sciences, and the review committee includes four other members of the nuclear physics board interested in this area: Faiçal Azaiez, Johan Nyberg, Eli Piasetzky and Douglas MacGregor. To create a truly authoritative account, the Scientific Editors have invited contributions from leading experts across Europe, and this publication is the combined result of their work. The review is extensively illustrated with important discoveries and examples from archaeology, pre-history, history, geography, culture, religion and curation, which underline the breadth and importance of this field. The large number of groups and laboratories working in the study and preservation of cultural heritage across Europe indicate the enormous effort and importance attached by society to this activity

    13C-Methyl isocyanide as an NMR probe for cytochrome P450 active site

    Get PDF
    The cytochromes P450 (CYPs) play a central role in many biologically important oxidation reactions, including the metabolism of drugs and other xenobiotic compounds. Because they are often assayed as both drug targets and anti-targets, any tools that provide: (a) confirmation of active site binding and (b) structural data, would be of great utility, especially if data could be obtained in reasonably high throughput. To this end, we have developed an analog of the promiscuous heme ligand, cyanide,with a 13CH3-reporter attached. This 13C-methyl isocyanide ligand binds to bacterial (P450cam) and membrane-bound mammalian (CYP2B4) CYPs. It can be used in a rapid 1D experiment to identify binders, and provides a qualitative measure of structural changes in the active site

    The Carboxyl-Terminal Segment of Apolipoprotein A-V Undergoes a Lipid-Induced Conformational Change

    Get PDF
    Apolipoprotein (apo) A-V is a 343-residue, multidomain protein that plays an important role in regulation of plasma triglyceride homeostasis. Primary sequence analysis revealed a unique tetraproline sequence (Pro293-Pro296) near the carboxyl terminus of the protein. A peptide corresponding to the 48-residue segment beyond the tetraproline motif was generated from a recombinant apoA-V precursor wherein Pro295 was replaced by Met. Cyanogen bromide cleavage of the precursor protein, followed by negative affinity chromatography, yielded a purified peptide. Nondenaturing polyacrylamide gel electrophoresis verified that apoA-V(296-343) solubilizes phospholipid vesicles, forming a relatively heterogeneous population of reconstituted high-density lipoprotein with Stokes’ diameters\u3e17 nm. At the same time, apoA-V(296-343) failed to bind a spherical lipoprotein substrate in vitro. Far-UV circular dichroism spectroscopy revealed the peptide is unstructured in buffer yet adopts significant R-helical secondary structure in the presence of the lipid mimetic solvent trifluoroethanol (TFE; 50% v/v). Heteronuclear multidemensional NMR spectroscopy experiments were conducted with uniformly 15N- and 15N/13C-labeled peptide in 50% TFE. Peptide backbone assignment and secondary structure prediction using TALOSþ reveal the peptide adopts R-helix secondary structure from residues 309 to 334. In TFE, apoA-V(296-343) adopts an extended amphipathic R-helix, consistent with a role in lipoprotein binding as a component of full-length apoA-V

    Incidence of the Tomonaga-Luttinger liquid state on the NMR spin lattice relaxation in Carbon Nanotubes

    Full text link
    We report 13C nuclear magnetic resonance measurements on single wall carbon nanotube (SWCNT) bundles. The temperature dependence of the nuclear spin-lattice relaxation rate, 1/T1, exhibits a power-law variation, as expected for a Tomonage-Luttinger liquid (TLL). The observed exponent is smaller than that expected for the two band TLL model. A departure from the power law is observed only at low T, where thermal and electronic Zeeman energy merge. Extrapolation to zero magnetic field indicates gapless spin excitations. The wide T range on which power-law behavior is observed suggests that SWCNT is so far the best realization of a one-dimensional quantum metal.Comment: 5 pages, 4 figure

    Spectroscopic characterization of the oxo-transfer reaction from a bis(µ-oxo)dicopper(III) complex to triphenylphosphine

    Get PDF
    The oxygen-atom transfer reaction from the bis(µ-oxo)dicopper(III) complex [CuIII2(µ-O)2(L)2]2+1, where L =N,N,N,N -tetraethylethylenediamine, to PPh3 has been studied by UV-vis, EPR, 1H NMR and Cu K-edge X-ray absorption spectroscopy in parallel at low temperatures (193 K) and above. Under aerobic conditions (excess dioxygen), 1 reacted with PPh3, giving OPPh3 and a diamagnetic species that has been assigned to an oxo-bridged dicopper(II) complex on the basis of EPR and Cu K-edge X-ray absorption spectroscopic data. Isotope-labeling experiments (18O2) established that the oxygen atom incorporated into the triphenylphosphine oxide came from both complex 1 and exogenous dioxygen. Detailed kinetic studies revealed that the process is a third-order reaction; the rate law is first order in both complex 1 and triphenylphosphine, as well as in dioxygen. At temperatures above 233 K, reaction of 1 with PPh3 was accompanied by ligand degradation, leading to oxidative N-dealkylation of one of the ethyl groups. By contrast, when the reaction was performed in the absence of excess dioxygen, negligible substrate (PPh3) oxidation was observed. Instead, highly symmetrical copper complexes with a characteristic isotropic EPR signal at g= 2.11 were formed. These results are discussed in terms of parallel reaction channels that are activated under various conditions of temperature and dioxygen
    corecore