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ABSTRACT: Apolipoprotein (apo) A-V is a 343-residue, multidomain protein that plays an important role in
regulation of plasma triglyceride homeostasis. Primary sequence analysis revealed a unique tetraproline seq-
uence (Pro293-Pro296) near the carboxyl terminus of the protein. A peptide corresponding to the 48-residue
segment beyond the tetraproline motif was generated from a recombinant apoA-V precursor wherein Pro295
was replaced by Met. Cyanogen bromide cleavage of the precursor protein, followed by negative affinity
chromatography, yielded a purified peptide. Nondenaturing polyacrylamide gel electrophoresis verified that
apoA-V(296-343) solubilizes phospholipid vesicles, forming a relatively heterogeneous population of recon-
stituted high-density lipoprotein with Stokes’ diameters >17 nm. At the same time, apoA-V(296-343) failed
to bind a spherical lipoprotein substrate in vitro. Far-UV circular dichroism spectroscopy revealed the peptide
is unstructured in buffer yet adopts significant R-helical secondary structure in the presence of the lipid
mimetic solvent trifluoroethanol (TFE; 50% v/v). Heteronuclear multidemensional NMR spectroscopy
experiments were conductedwith uniformly 15N- and 15N/13C-labeled peptide in 50%TFE. Peptide backbone
assignment and secondary structure prediction using TALOSþ reveal the peptide adopts R-helix secondary
structure from residues 309 to 334. In TFE, apoA-V(296-343) adopts an extended amphipathic R-helix,
consistent with a role in lipoprotein binding as a component of full-length apoA-V.

Apolipoprotein (apo)1A-Vwas discovered in 2001 in a compa-
rative genomics study (1) and as an mRNA upregulated during
rat liver regeneration (2). Subsequent research has shown that
apoA-V serves as a potent modulator of plasma triacylglycerol
(TG) homeostasis. Mature apoA-V is a nonglycosylated protein
comprised of 343 amino acids. An interesting feature of apoA-V
is the presence of four consecutive Pro near the carboxyl (C) ter-
minus (Pro293-Pro296). Indeed, this sequence element in apoA-V
is conserved across species including human, rat, mouse, olive
baboon, cow,wild boar, and dog but not frog or chicken.Whereas
the 47-residue segment C-terminal to the tetraproline sequence in
human apoA-V was postulated to comprise an independent struc-
tural domain, guanidine hydrochloride denaturation studies showed
this segment comprises part of a larger C-terminal domain (3).
A recombinant C-terminal truncated apoA-V, missing the
region beyond residue 292, displayed defective lipid binding acti-
vity compared to full-length apoA-V. Furthermore, in the absence
of a C-terminal domain, the N-terminal domain of apoA-V
(residues 1-146) loses its capacity to bind larger lipoprotein

substrates, such as very low density lipoprotein (4). When taken
together with observations that naturally occurring C-terminal
truncated apoA-V mutants in humans are associated with severe
hypertriglyceridemia (HTG) (5, 6), it is conceivable that residues
296-343 of apoA-V are required for proper functioning of this
protein. In the present study, we have designed a protocol for
expression and purification of recombinant of apoA-V(296-343).
Structure-function analyses reveal unique lipid-binding proper-
ties of this peptide while heteronuclear multidimensional NMR
studies provide evidence that, although apoA-V(296-343) is un-
structured in buffer alone, it adopts R-helix secondary structure
in a lipid mimetic environment.

EXPERIMENTAL PROCEDURES

Preparation of apoA-V(296-343). Site-directed mutagene-
sis was performedwith theQuikChange IIXL site-directedmuta-
genesis kit (Strategene) on an N-terminal His tag-containing
human apoA-V construct encoding residues 148-343. Primers
were designed to mutate the sole naturally occurring Met at
position 253 (numbering corresponds to sequence position in
mature, full-length apoA-V) to Ile and Pro295 toMet. Introduc-
tion of the desired mutations was verified by DNA sequencing.
The variant apoA-V(148-343) was cloned into pET20bþ vector,
and unlabeled, uniformly 15N-labeled, or double 15N/13C-labeled
variant apoA-V(148-343) were expressed in Escherichia coli
BL21 cells cultured inNCZYM(unlabeled protein) orM9minimal
media (isotopically labeled protein) and purified as described
previously for full-length recombinant apoA-V (7). Purified
variant apoA-V(148-343) was then solubilized in 80% formic
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acid at a concentration of 5mg/mL. CNBr was added at a CNBr:
Met ratio >100 and incubated under N2 atmosphere for 24 h
in the dark. The reaction was quenched by addition of >10-fold
excess deionized water and the sample lyophilized to remove
residual CNBr. The freeze-dried product was resuspended and
subjected to affinity chromatography on a Hi-Trap Ni2þ chela-
tion column. Since only the unreacted variant apoA-V(148-343)
substrate and the N-terminal CNBr cleavage product, apoA-V-
(148-295), possess a His tag, apoA-V(296-343) elutes in the
unbound fraction free of contamination.
Analytical Procedures. Protein concentration in samples

was determined with the bicinchoninic acid assay (Pierce) using
bovine serum albumin as standard. SDS-PAGE was performed
on 4-12% acrylamide slab gels using the NuPAGEMES buffer
system (Invitrogen) at a constant 200 V for 35 min. Gels were
stained with Gel Code Blue (Pierce). Mass spectrometry was
performed on an Applied Biosystems Voyager System 6322. The
matrix used was R-cyano-4-hydroxycinnamic, and the matrix and
sample were dissolved in 1:1 water:acetonitrile (0.1% TFA) and
drop cast.
Preparation of apoA-V(296-343) Reconstituted High-

Density Lipoprotein (rHDL). Bilayer vesicles of dimyristoyl-
phosphatidylcholine (DMPC) were prepared as described (7) and
incubated in the presence of apoA-V(296-343) at a DMPC:
peptide weight ratio of 3:1. Following bath sonication at 24 �C,
the complexes generated were characterized by nondenaturing
gradient polyacrylamide gel electrophoresis as described by
Nichols et al. (8).
Low-Density Lipoprotein (LDL) Binding Assay. Human

LDL (Intracel) was incubated for 90 min at 37 �C in the presence
or absence of Bacillus cereus phospholipase C (PL-C) (0.6 unit/
50 μg of LDL protein). Where indicated, apoA-V(296-343) or
recombinant human apoA-I (9) was included in the reaction
mixture (50 μg/50 μg of LDL protein). Incubations were con-
ducted in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, and 2 mM
CaCl2 in a total sample volume of 200 μL. Sample turbidity was
measured at 340 nm on a Spectramax 340 microtiter plate reader
(Sunnyvale, CA) (10).
Far-UVCircular Dichroism (CD) Spectroscopy. Far-UV

CDspectroscopymeasurementswere performedon anAVIV410
spectrometer. Scans were obtained between 195 and 245 nm in
10 mM sodium phosphate, pH 7.4, using a protein concentration
of 0.5 mg/mL.
Nuclear Magnetic Resonance (NMR) Spectroscopy.

NMRexperimentswere performedon1.5mMsamples of uniformly

15N- or 15N/13C-labeled apoA-V(296-343) in 500 μL of NMR
buffer (90% H2O/10% D2O containing 90 mM KCl, 9 mM
imidazole, and 0.5 mM 2,2-dimethyl-2-silapentane-5-sulfonate
(DSS-d6) as an internal chemical shift reference) without andwith
50% trifluoroethanol (TFE-d3). NMR experiments were carried
out at 25 �C on Varian INOVA 500, 600, and 800 MHz NMR
spectrometers. Data were processed using NMRPipe (11) and
analyzed with NMRView (12). Sequential assignment of the
backbone atoms of apoA-V(296-343) was obtained using
2D 1H-15N-HSQC, 3D 15N-edited NOESY (75 ms mix), HNHA,
HNCACB, andCBCA(CO)NNH experiments. 2D 13C-HSQC, 3D
H(CCO)NH, C(CO)NNH, and 13C-edited NOESY (100 ms mix)
experiments provided side-chain assignments. Secondary structure
predictions were obtained using the program TALOSþ (13).

RESULTS

Isolation of Purified apoA-V(296-343) Peptide. Due to
the size of the peptide under investigation (48 amino acids) and a
desire to generate isotopically enriched apoA-V(296-343), a
protocol was established to generate recombinant peptide from
a larger, apoA-V(148-343) precursor. Site-directed mutagenesis
was performed to replace the sole Met in this fragment with Ile,
while a second mutagenesis introduced Met in place of Pro295.
As predicted, CNBr cleavage of the resulting variant apoA-V-
(148-343) yielded two major fragments. Negative affinity chro-
matography was performed to isolate the peptide from unreacted
precursor protein and the apoA-V(148-295) CNBr reaction
product (Figure 1). One liter of culture media yielded ∼2 mg of
high-purity peptide.
apoA-V(296-343) Reconstituted High-Density Lipo-

proteins. Incubation of apoA-V(296-343) with bilayer vesicles
of DMPC induced rapid clearing of solution turbidity, indicative
of rHDL formation. Native PAGE analysis revealed a relatively
heterogeneous population of particles with a Stokes’ diameter
>17 nm (Figure 2). The rHDL generated in this reaction are
larger in size than discoidal particles formed with full-length
apoA-V.
apoA-V(296-343) Lipoprotein Binding Properties. When

isolated human LDL is incubated with PL-C, conversion of pho-
phatidylcholine to diacylglycerol induces lipoprotein particle insta-
bility, aggregation, and sample turbidity development (Figure 3).
In control incubations lacking PL-C, no change in LDL sample
turbidity was observed. When conducted in the presence of
apoA-I, LDL was protected from PL-C induced aggregation
and turbidity development as a result of apoA-I association with

FIGURE 1: Flow chart of the apoA-V(296-343) production method and SDS-PAGE of peptide purity.
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the modified particle surface (10). By contrast, corresponding
incubations with apoA-V(296-343) failed to protect LDL from
PL-C-induced sample turbidity development.
Far-UV CD Spectroscopy. Far-UV CD spectroscopy ana-

lysis indicates apoA-V(296-343) is largely unstructured in buffer
(Figure 4). In the presence of the lipid mimetic cosolvent, TFE
(50%v/v), however, majorminima at 208 and 222 nm are present,
indicative of R-helix secondary structure. The far-UV CD spec-
trum of apoA-V(296-343) 3DMPC complexes is similar to that
of apoA-V(296-343) in TFE (data not shown).
NMR of 15N-Labeled apoA-V(296-343). When bacteria

used to express the variant apoA-V(148-343) were cultured in
M9 minimal media containing 15N as the sole nitrogen source,
uniformly 15N-labeled apoA-V(296-343) was generated. Mass
spectrometry analysis of the sample yielded a value of 5388Da, in
good agreement with the expected theoretical calculatedmass for
a fully 15N-enriched peptide (5387.7 Da). NMR spectra were
collected in buffer, the detergent dodecylphosphocholine (DPC),
and the lipid mimetic cosolvent TFE. Comparison revealed the

spectra were best resolved in TFE. Thus, assignment and struc-
ture calculation were performed under this condition. Two-
dimensional 15N-1H correlation spectroscopy of 15N-labelded
apoA-V(296-343) in NMR buffer gave rise to a spectrum that
showed poor resonance dispersion, consistent with a general lack
of secondary structure under these conditions (Figure 5a). By
contrast, spectra recorded in 50% NMR buffer/50% TFE dis-
played significantly increased chemical shift dispersion, consis-
tent with adoption of secondary structure (Figure 5b). Given the
prospect of assigning these resonances and ultimate structure
determination, a second apoA-V(296-343) peptide, enriched in
both 15N and 13C, was generated. Using a panel of heteronuclear
multidimensional NMR experiments, the backbone and side-
chain atoms of apoA-V were assigned. As seen in Figure 5b, all
resonances, except for G297, H298, S338, and H339, which were
not visible in the 15N-1HHSQC, have been assigned. Secondary
chemical shift values (defined as the difference between the
measured chemical shift of a given atom and the corresponding
chemical shift value for the same atom in random coil con-
formation) for 13C0, 13CR, 13Cβ, HR, HN, and/or 15N atoms
characterize probability of helical or β-sheet conformation occur-
rence. The TALOSþ program (13) uses available secondary
chemical shifts to calculate random coil index (RCI) and predict
secondary structure (14). Positive RCI values show probable
β-sheet occurrence while negative values indicate helical confor-
mation. Prediction of the secondary structure using TALOSþ
indicated peptide residues 309-334 adopt R-helix under these
experimental conditions (Figure 6).

DISCUSSION

Themechanismwhereby apoA-V influences plasmaTGhomeo-
stasis has been the subject of intensive investigation (15, 16).
Studies have revealed that this protein associates with plasma
lipoproteins and possesses the capacity to bind cell surface mole-
cules including heparan sulfate proteoglycans (HSPG), members
of the LDL receptor family, and glycosylphosphatidylinositol
high-density lipoprotein binding protein 1 (15). Considering
evidence from genetically engineered mouse models and popula-
tion studies investigating correlations between common single
nucleotide polymorphisms in APOAV and elevated plasma TG,
better understanding of apoA-V structure and function relations
may lead to new strategies to treat HTG. The fact that apoA-V
concentration in plasma is extremely low (∼100 ng/mL) suggests
it possesses potent biological activity (17).

FIGURE 2: Native PAGE of apoA-V(296-343) 3DMPC complexes.
ApoA-V(296-343) 3DMPC complexes were prepared as described
under Experimental Procedures and applied to a 4-20% acrylamide
gradient gel. Following electrophoresis the gel was stained with Gel
Code Blue. Lane 1, apoA-V(296-343) 3DMPC complexes (5 μg of
protein); lane 2, full-length apoA-V 3DMPC complexes (5 μg of
protein); lane 3, molecular size standards.

FIGURE 3: Effect of apoA-V(296-343) and apoA-I on PL-C-in-
duced aggregation of human LDL. Human LDL (50 μg of protein)
was incubated at 37 �C in the absence (curve a) or presence (curve b)
ofPL-C (0.6 unit).Other incubations containedLDL,PL-C, and50μg
of apoA-V(296-343) peptide (curve d) or 50 μg of apoA-I (curve c).
Sample absorbance at 340 nm was measured as a function of time.
The values reported are the mean ( standard deviation (n = 3).

FIGURE 4: Far-UV CD of 0.5 mg/mL apoA-V(296-343) in 10 mM
sodiumphosphate, pH7.4 (solid line), and in 50%TFE (dashed line).
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Limited proteolysis and denaturation studies reveal apoA-V is
comprised of two independently folded structural domains (18).
The N-terminal domain, comprising residues 1-146, adopts a
helix bundle molecular architecture in the absence of lipid (18).
TheC-terminal domain, comprising residues 147-343, is lesswell
understood but is known to contain a sequence element (residues
186-227) that is rich in positively charged amino acids and lacks
negatively charged residues. It has been postulated that this
region of the protein is responsible for apoA-V interactions with
cell surface proteins and HSPG (19-21).

In lipid binding studies, while the peptide corresponding to
apoA-V(296-343) displays high phospholipid vesicle solubilization

activity and undergoes a 16 nm blue shift in wavelength of
maximum tryptophan fluorescence emission (arising from the
single Trp at sequence position 325) in the presence of phospho-
lipid (3), it fails to associate with the surface of a spherical lipo-
protein substrate. This result illustrates important differences
between lipoprotein binding and vesicle solubilization activity.
The ability of apolipoproteins to bind PL-C-treated LDL is
dependent on creation of binding sites, via PL-C-mediated con-
version of phosphatidylcholine to diacylglycerol, whereas inter-
action with phospholipid bilayer vesicles proceeds optimally at
the phospholipid gel to liquid-crystal phase transition temperature
(22). It appears that the lack of secondary structure in buffer

FIGURE 5: (a) 2D 1H-15NHSQCof 15N-labeled apoA-V(296-343) inNMRbuffer acquired at 500MHz. (b) 2D 1H-15NHSQCof 15N-labeled
apoA-V(296-343) in 50% NMR buffer/50% TFE acquired at 800 MHz. Peak assignments are indicated.
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precludes recognition/binding to the surface of a lipoprotein yet its
intrinsic capacity to associate with lipid is retained in the phos-
pholipid vesicle solubilization assay, perhaps owing to the induc-
tion of secondary structure as part of the solubilization reaction.

A concept that has emerged from structural studies conducted
to date is that the C-terminal segment beyond the four con-
secutive Pro may be responsible for initiation of apoA-V lipid
binding activity. This interpretation is consistent with the lipid
binding properties of other apolipoproteins, such as apoE and
apoA-I (23), and is supported by data showing that removal of
this C-terminal region results in an impaired ability of apoA-V to
bind lipid (3). It may be postulated that initiation of lipid binding
is mediated by hydrophobic interactions between nonpolar
residues in the C-terminal peptide and the hydrophobic lipid sur-
face and/or ionic interactions between charged residues and phos-
pholipid headgroups. In both types of interactions, the C-terminal
peptide may be envisioned to mediate initial recognition of
the lipoprotein particle, followed by stable binding of the entire
protein.

The experiments described in this study indicate that in order
to initiate lipid binding, apoA-V(296-343) may need to exist
within the context of the intact protein. Far-UV CD and NMR
spectroscopy experiments show that apoA-V(296-343) is un-
structured in buffer alone. In the case of other apolipoproteins,
adoption of a more loosely folded structure correlates with
enhanced lipid binding activity (24). It is conceivable theC-terminal
region of apoA-V initiates lipid binding and that this process
induces stable secondary structure formation in this segment of
the protein. In this case, it seems plausible that lipid binding elicits
a subsequent conformational change in the N-terminal helix
bundle that results in opening of the bundle and exposure of its
hydrophobic interior to potential lipid interaction sites. A con-
sequence of this may also include exposure of the positively
charged sequence motif (residues 186-227) that underlies the
biological effects of apoA-V.

In an effort to test hypotheses related to this model, we sought
to characterize the structural properties of the C-terminal pep-
tide. In order to study the peptide in isolation, methods were
developed to produce recombinant peptide. Using this system,
efficient stable isotope enrichment of the peptide was readily
achieved. A panel of heteronuclear multidimensional NMR
experiments was employed to assign the apoA-V(296-343) spec-
trumanddefine its structure in a lipidmimetic environment.Results
obtained suggest apoA-V(296-343) undergoes a lipid-induced
conformational change, transitioning from an unstructured or

molten globule-like state in the lipid-free environment to R-helix
in a lipid mimetic environment. NMR analysis reveals the region
between residues 309-334 adopts a R-helix secondary structure
under these conditions. These data confirm the prediction from
the Coils program (25) that the region between Gly311 and
Leu332 in apoA-V(296-343) adopts R-helical secondary struc-
ture. Edmundson helical wheel projection (26) of Gly311-Ile328
reveals this region forms an amphipathic R-helix with clearly
demarcated polar and nonpolar faces. Primary sequence analysis
reveals almost all of the hydrophobic and charged residueswithin
apoA-V(296-343) reside within this R-helix segment. Thus, it
may be considered that, in the presence of lipid, the extreme car-
boxyl terminus of apoA-V adopts an amphipathic R-helix. This
induction of structure supports the concept that the C-terminal
region of apoA-V may serve as a lipid sensor that functions in
initiationof full-length apoA-V lipid binding activity and subsequent
structure conformation changes in the entire protein, as seen with
apoE and apoA-I (23). The known ability of apoA-V to transfer
between high-density lipoprotein and very low density lipoprotein
suggests the present findings are physiologically relevant (4, 27).

Since our data show apoA-V C-terminal peptide can adopt
structure, it must be considered that, when present in the context
of the intact protein, the C-terminal region possesses a more
defined structure. Indeed, an important question arising from
this study relates to whether the C-terminal peptide structure
determined here resembles that of the peptide when present in the
context of the intact protein. To determine this, expressed protein
ligation represents a potential strategy to generate a segmentally
isotope-labeled full-length apoA-V wherein only residues 296-
343 are enriched with stable isotope (28). Such an approach
would allow detailed analysis of the solution properties and lipid
binding induced conformational changes in this region of the
protein within the context of the intact apoA-V protein.
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