20,379 research outputs found

    Application of machine learning in knowledge discovery for pharmaceutical drug-drug interactions

    Get PDF
    Abstract. Artificial neural networks (ANNs) have been developed to predict the clinical significance of drug-drug interactions (DDIs) for a set of 35 pharmaceutical drugs using data compiled from the Web-based resources, Lexicomp® and Vidal®, with inputs furnished by various drug pharmacokinetic (PK) and/or pharmacodynamic (PD) properties, and/or drug-enzyme interaction data. Success in prediction of DDI significance was found to vary according to the drug properties used as ANN input, and also varied with the DDI dataset used in training. The Lexicomp® dataset is found to give predictions marginally better than those obtained using the Vidal® dataset, with the best prediction of minor DDIs achieved using a multi-layer perceptron (MLP) model trained using enzyme variables alone (F1 82%) and the best prediction of major DDIs achieved using a MLP model trained on PK/PD properties alone (F1 54%). Given a more comprehensive and more consistent dataset of DDI data, we conclude that machine learning tools could be used to acquire new knowledge on DDIs, and could thus facilitate the regulatory agencies' pharmocovigilance of newly licensed drugs

    The benefits of in silico modeling to identify possible small-molecule drugs and their off-target interactions

    Get PDF
    Accepted for publication in a future issue of Future Medicinal Chemistry.The research into the use of small molecules as drugs continues to be a key driver in the development of molecular databases, computer-aided drug design software and collaborative platforms. The evolution of computational approaches is driven by the essential criteria that a drug molecule has to fulfill, from the affinity to targets to minimal side effects while having adequate absorption, distribution, metabolism, and excretion (ADME) properties. A combination of ligand- and structure-based drug development approaches is already used to obtain consensus predictions of small molecule activities and their off-target interactions. Further integration of these methods into easy-to-use workflows informed by systems biology could realize the full potential of available data in the drug discovery and reduce the attrition of drug candidates.Peer reviewe

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Designing algorithms to aid discovery by chemical robots

    Get PDF
    Recently, automated robotic systems have become very efficient, thanks to improved coupling between sensor systems and algorithms, of which the latter have been gaining significance thanks to the increase in computing power over the past few decades. However, intelligent automated chemistry platforms for discovery orientated tasks need to be able to cope with the unknown, which is a profoundly hard problem. In this Outlook, we describe how recent advances in the design and application of algorithms, coupled with the increased amount of chemical data available, and automation and control systems may allow more productive chemical research and the development of chemical robots able to target discovery. This is shown through examples of workflow and data processing with automation and control, and through the use of both well-used and cutting-edge algorithms illustrated using recent studies in chemistry. Finally, several algorithms are presented in relation to chemical robots and chemical intelligence for knowledge discovery
    • …
    corecore