22 research outputs found

    Fibonacci Collocation Method for Solving High-Order Linear Fredholm Integro-Differential-Difference Equations

    Get PDF
    A new collocation method based on the Fibonacci polynomials is introduced for the approximate solution of high order-linear Fredholm integro-differential-difference equations with the mixed conditions. The proposed method is analyzed to show the convergence of the method. Some further numerical experiments are carried out to demonstrate the method

    An efficient method based on framelets for solving fractional volterra integral equations

    Get PDF
    © 2020 by the authors. This paper is devoted to shedding some light on the advantages of using tight frame systems for solving some types of fractional Volterra integral equations (FVIEs) involved by the Caputo fractional order derivative. A tight frame or simply framelet, is a generalization of an orthonormal basis. A lot of applications are modeled by non-negative functions; taking this into account in this paper, we consider framelet systems generated using some refinable non-negative functions, namely, B-splines. The FVIEs we considered were reduced to a set of linear system of equations and were solved numerically based on a collocation discretization technique. We present many important examples of FVIEs for which accurate and efficient numerical solutions have been accomplished and the numerical results converge very rapidly to the exact ones

    Shifted Legendre polynomial solutions of nonlinear stochastic Itô - Volterra integral equations

    Get PDF
    In this article, we propose the shifted Legendre polynomial-based solution for solving a stochastic integral equation. The properties of shifted Legendre polynomials are discussed. Also, the stochastic operational matrix required for our proposed methodology is derived. This operational matrix is capable of reducing the given stochastic integral equation into simultaneous equations with N+1 coefficients, where N is the number of terms in the truncated series of function approximation. These unknowns can be found by using any well-known numerical method. In addition to the capability of the operational matrices, an essential advantage of the proposed technique is that it does not require any integration to compute the constant coefficients. This approach may also be used to solve stochastic differential equations, both linear and nonlinear, as well as stochastic partial differential equations. We also prove the convergence of the solution obtained through the proposed method in terms of the expectation of the error function. The upper bound of the error in L² norm between exact and approximate solutions is also elaborately discussed. The applicability of this methodology is tested with a few numerical examples, and the quality of the solution is validated by comparing it with other methods with the help of tables and figures.Publisher's Versio

    Numerical Approximate Methods for Solving Linear and Nonlinear Integral Equations

    Get PDF
    Integral equation has been one of the essential tools for various area of applied mathematics. In this work, we employed different numerical methods for solving both linear and nonlinear Fredholm integral equations. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study on numerical methods for solving integral equations. Integral equations can be viewed as equations which are results of transformation of points in a given vector spaces of integrable functions by the use of certain specific integral operators to points in the same space. If, in particular, one is concerned with function spaces spanned by polynomials for which the kernel of the corresponding transforming integral operator is separable being comprised of polynomial functions only, then several approximate methods of solution of integral equations can be developed. This work, specially, deals with the development of different wavelet methods for solving integral and intgro-differential equations. Wavelets theory is a relatively new and emerging area in mathematical research. It has been applied in a wide range of engineering disciplines; particularly, wavelets are very successfully used in signal analysis for waveform representations and segmentations, time frequency analysis, and fast algorithms for easy implementation. Wavelets permit the accurate representation of a variety of functions and operators. Moreover, wavelets establish a connection with fast numerical algorithms. Wavelets can be separated into two distinct types, orthogonal and semi-orthogonal. The preliminary concept of integral equations and wavelets are first presented in Chapter 1. Classification of integral equations, construction of wavelets and multi-resolution analysis (MRA) have been briefly discussed and provided in this chapter. In Chapter 2, different wavelet methods are constructed and function approximation by these methods with convergence analysis have been presented. In Chapter 3, linear semi-orthogonal compactly supported B-spline wavelets together with their dual wavelets have been applied to approximate the solutions of Fredholm integral equations (both linear and nonlinear) of the second kind and their systems. Properties of these wavelets are first presented; these properties are then utilized to reduce the computation of integral equations to some algebraic equations. Convergence analysis of B-spline method has been discussed in this chapter. Again, in Chapter 4, system of nonlinear Fredholm integral equations have been solved by using hybrid Legendre Block-Pulse functions and xiii Bernstein collocation method. In Chapter 5, two practical problems arising from chemical phenomenon, have been modeled as Fredholm- Hammerstein integral equations and solved numerically by different numerical techniques. First, COSMO-RS model has been solved by Bernstein collocation method, Haar wavelet method and Sinc collocation method. Second, Hammerstein integral equation arising from chemical reactor theory has been solved by B-spline wavelet method. Comparison of results have been demonstrated through illustrative examples. In Chapter 6, Legendre wavelet method and Bernoulli wavelet method have been developed to solve system of integro-differential equations. Legendre wavelets along with their operational matrices are developed to approximate the solutions of system of nonlinear Volterra integro-differential equations. Also, nonlinear Volterra weakly singular integro-differential equations system has been solved by Bernoulli wavelet method. The properties of these wavelets are used to reduce the system of integral equations to a system of algebraic equations which can be solved numerically by Newton's method. Rigorous convergence analysis has been done for these wavelet methods. Illustrative examples have been included to demonstrate the validity and applicability of the proposed techniques. In Chapter 7, we have solved the second order Lane-Emden type singular differential equation. First, the second order differential equation is transformed into integro-differential equation and then solved by Legendre multi-wavelet method and Chebyshev wavelet method. Convergence of these wavelet methods have been discussed in this chapter. In Chapter 8, we have developed a efficient collocation technique called Legendre spectral collocation method to solve the Fredholm integro-differential-difference equations with variable coefficients and system of two nonlinear integro-differential equations which arise in biological model. The proposed method is based on the Gauss-Legendre points with the basis functions of Lagrange polynomials. The present method reduces this model to a system of nonlinear algebraic equations and again this algebraic system has been solved numerically by Newton's method. The study of fuzzy integral equations and fuzzy differential equations is an emerging area of research for many authors. In Chapter 9, we have proposed some numerical techniques for solving fuzzy integral equations and fuzzy integro-differential equations. Fundamentals of fuzzy calculus have been discussed in this chapter. Nonlinear fuzzy Hammerstein integral equation has been solved by Bernstein polynomials and Legendre wavelets, and then compared with homotopy analysis method. We have solved nonlinear fuzzy Hammerstein Volterra integral equations with constant delay by Bernoulli wavelet method and then compared with B-spline wavelet method. Finally, fuzzy integro-differential equation has been solved by Legendre wavelet method and compared with homotopy analysis method. In fuzzy case, we have applied two-dimensional numerical methods which are discussed in chapter 2. Convergence analysis and error estimate have been also provided for Bernoulli wavelet method. xiv The study of fractional calculus, fractional differential equations and fractional integral equations has a great importance in the field of science and engineering. Most of the physical phenomenon can be best modeled by using fractional calculus. Applications of fractional differential equations and fractional integral equations create a wide area of research for many researchers. This motivates to work on fractional integral equations, which results in the form of Chapter 10. First, the preliminary definitions and theorems of fractional calculus have been presented in this chapter. The nonlinear fractional mixed Volterra-Fredholm integro-differential equations along with mixed boundary conditions have been solved by Legendre wavelet method. A numerical scheme has been developed by using Petrov-Galerkin method where the trial and test functions are Legendre wavelets basis functions. Also, this method has been applied to solve fractional Volterra integro-differential equations. Uniqueness and existence of the problem have been discussed and the error estimate of the proposed method has been presented in this work. Sinc Galerkin method is developed to approximate the solution of fractional Volterra-Fredholm integro-differential equations with weakly singular kernels. The proposed method is based on the Sinc function approximation. Uniqueness and existence of the problem have been discussed and the error analysis of the proposed method have been presented in this chapte

    On numerical solution of Fredholm and Hammerstein integral equations via Nyström method and Gaussian quadrature rules for splines

    Get PDF
    The first author acknowledges partial financial support by the IMAG-Maria de Maeztu grant CEX2020-001105-M/AEI/10.13039/501100011033. The second author has been partially supported by Spanish State Research Agency (Spanish Min-istry of Science, Innovation and Universities) : BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and by Ramon y Cajal with reference RYC-2017-22649. The fourth author is member of GNCS-INdAM.Nyström method is a standard numerical technique to solve Fredholm integral equations of the second kind where the integration of the kernel is approximated using a quadrature formula. Traditionally, the quadrature rule used is the classical polynomial Gauss quadrature. Motivated by the observation that a given function can be better approximated by a spline function of a lower degree than a single polynomial piece of a higher degree, in this work, we investigate the use of Gaussian rules for splines in the Nyström method. We show that, for continuous kernels, the approximate solution of linear Fredholm integral equations computed using spline Gaussian quadrature rules converges to the exact solution for m →∞, m being the number of quadrature points. Our numerical results also show that, when fixing the same number of quadrature points, the approximation is more accurate using spline Gaussian rules than using the classical polynomial Gauss rules. We also investigate the non-linear case, considering Hammerstein integral equations, and present some numerical tests.IMAG-Maria de Maeztu grant CEX2020-001105-M/AEI/10.13039/501100011033Spanish State Research Agency (Spanish Min-istry of Science, Innovation and Universities) SEV-2017-0718Spanish Government RYC-2017-2264

    On numerical solution of Fredholm and Hammerstein integral equations via Nystr\"{o}m method and Gaussian quadrature rules for splines

    Get PDF
    Nystr\"{o}m method is a standard numerical technique to solve Fredholm integral equations of the second kind where the integration of the kernel is approximated using a quadrature formula. Traditionally, the quadrature rule used is the classical polynomial Gauss quadrature. Motivated by the observation that a given function can be better approximated by a spline function of a lower degree than a single polynomial piece of a higher degree, in this work, we investigate the use of Gaussian rules for splines in the Nystr\"{o}m method. We show that, for continuous kernels, the approximate solution of linear Fredholm integral equations computed using spline Gaussian quadrature rules converges to the exact solution for mm \rightarrow \infty, mm being the number of quadrature points. Our numerical results also show that, when fixing the same number of quadrature points, the approximation is more accurate using spline Gaussian rules than using the classical polynomial Gauss rules. We also investigate the non-linear case, considering Hammerstein integral equations, and present some numerical tests.RYC-2017-2264

    Abstract book

    Get PDF
    Welcome at the International Conference on Differential and Difference Equations & Applications 2015. The main aim of this conference is to promote, encourage, cooperate, and bring together researchers in the fields of differential and difference equations. All areas of differential & difference equations will be represented with special emphasis on applications. It will be mathematically enriching and socially exciting event. List of registered participants consists of 169 persons from 45 countries. The five-day scientific program runs from May 18 (Monday) till May 22, 2015 (Friday). It consists of invited lectures (plenary lectures and invited lectures in sections) and contributed talks in the following areas: Ordinary differential equations, Partial differential equations, Numerical methods and applications, other topics

    New Operational Matrix via Genocchi Polynomials for Solving Fredholm-Volterra Fractional Integro-Differential Equations

    Get PDF
    It is known that Genocchi polynomials have some advantages over classical orthogonal polynomials in approximating function, such as lesser terms and smaller coefficients of individual terms. In this paper, we apply a new operational matrix via Genocchi polynomials to solve fractional integro-differential equations (FIDEs). We also derive the expressions for computing Genocchi coefficients of the integral kernel and for the integral of product of two Genocchi polynomials. Using the matrix approach, we further derive the operational matrix of fractional differentiation for Genocchi polynomial as well as the kernel matrix. We are able to solve the aforementioned class of FIDE for the unknown function ( ). This is achieved by approximating the FIDE using Genocchi polynomials in matrix representation and using the collocation method at equally spaced points within interval [0

    New Operational Matrix via Genocchi Polynomials for Solving Fredholm-Volterra Fractional Integro-Differential Equations

    Get PDF
    It is known that Genocchi polynomials have some advantages over classical orthogonal polynomials in approximating function, such as lesser terms and smaller coefficients of individual terms. In this paper, we apply a new operational matrix via Genocchi polynomials to solve fractional integro-differential equations (FIDEs). We also derive the expressions for computing Genocchi coefficients of the integral kernel and for the integral of product of two Genocchi polynomials. Using the matrix approach, we further derive the operational matrix of fractional differentiation for Genocchi polynomial as well as the kernel matrix. We are able to solve the aforementioned class of FIDE for the unknown function f(x). This is achieved by approximating the FIDE using Genocchi polynomials in matrix representation and using the collocation method at equally spaced points within interval [0,1]. This reduces the FIDE into a system of algebraic equations to be solved for the Genocchi coefficients of the solution f(x). A few numerical examples of FIDE are solved using those expressions derived for Genocchi polynomial approximation. Numerical results show that the Genocchi polynomial approximation adopting the operational matrix of fractional derivative achieves good accuracy comparable to some existing methods. In certain cases, Genocchi polynomial provides better accuracy than the aforementioned methods
    corecore