1,902 research outputs found

    Secure Authentication Scheme for the Internet of Things

    Get PDF
    The Internet of Things (IoT) is based on an extensive and wide range of interconnected heterogeneous units’ general applications, including healthcare systems, environmental monitoring, household automation, and business automation. This work presents an approach variant of the elliptic curve; The cryptography approach is implemented to provide more security with fewer key sizes and with protocol enhancements to perform an efficient authentication process. In the process of authenticating the device, we use the Electronic Product Code (EPC) as a key to authentication, where the overhead of giving input is removed. Mention the methods followed to meet all your performance metrics (minimum execution time; low energy consumption, and qualitative comparison). This proposed scheme (i.e., the energy consumption of 0.27 mJ, the reduction in end delay of 0.058 sec., the reduction in the computation cost, and being more resistant to attack) is compared with other recent authentication protocols. The proposed system creates a secure network to lessen the damage if there is an attack in the IoT environment. The performance evaluation results indicate that the proposed scheme has a lower energy consumption and a more resistant authentication scheme, and we observe a trade-off between security and the lightweight factor

    Resource Efficient Authentication and Session Key Establishment Procedure for Low-Resource IoT Devices

    Get PDF
    open access journalThe Internet of Things (IoT) can includes many resource-constrained devices, with most usually needing to securely communicate with their network managers, which are more resource-rich devices in the IoT network. We propose a resource-efficient security scheme that includes authentication of devices with their network managers, authentication between devices on different networks, and an attack-resilient key establishment procedure. Using automated validation with internet security protocols and applications tool-set, we analyse several attack scenarios to determine the security soundness of the proposed solution, and then we evaluate its performance analytically and experimentally. The performance analysis shows that the proposed solution occupies little memory and consumes low energy during the authentication and key generation processes respectively. Moreover, it protects the network from well-known attacks (man-in-the-middle attacks, replay attacks, impersonation attacks, key compromission attacks and denial of service attacks)

    An Optimized Node Level Lightweight Security Algorithm for Cloud Assisted-IoT

    Get PDF
    The fastest-evolving technology, the Internet of Things (IoT), will advance the fields of agriculture, defense, and medical electronics. IoT is focused on giving every object a purpose. IoT with cloud assistance offers a potential remedy for the issue of data expansion for individual objects with restricted capabilities. With the increasing use of cloud technology, the Internet of Things (IoT) has encountered additional security hurdles when it comes to exchanging data between two parties. To address this issue, a thorough investigation was conducted into a secure cloud-assisted strategy for managing IoT data, which ensures the safety of data during its collection, storage, and retrieval via the cloud, while also considering the growing number of users. To achieve this, a lightweight security mechanism that is optimized at the node level is implemented in the proposed system. By utilizing our technology, a secure IoT infrastructure can be established to prevent the majority of data confidentiality threats posed by both insiders and outsiders. Using a heartbeat sensor and a node MCU, we create a heartbeat monitoring system. At the node MCU level, giving security to the patient's health data and preventing unauthorized users from attacking it. Smaller key sizes and lightweight security techniques for IoT devices with minimal power, lower power and memory consumption and Execution time, transmission capacity reserve is used to achieve security. In order to achieve this. The performance of the RSA and ECC algorithms in terms of execution time, power consumption, and memory use have been tabulated for this experimental arrangement. The ECC method occurs to produce the best results in tiny devices

    Secure and Lightweight Authentication Protocols for Devices in Internet of Things

    Get PDF
    The Internet of Things (IoT) has become an intriguing trend worldwide as it allows any smart device with an IP address to participate in a highly immersive and connected environment that integrates physical, digital and social aspects of the user’s lives. The perpetual growth of IoT devices is resulting in less attention on the security side allowing attackers to find easy ways to exploit the devices. Hence, security is one of the important and challenging research areas in IoT. Furthermore, the resource-constrained nature of these devices results in poor performance when the traditional security protocols are used. In this thesis, we propose secure and lightweight authentication protocols for devices in IoT. A centralized network model is considered where the devices in the perception layer are mutually authenticated with the gateway of the system. A mutual authentication mechanism which uses symmetric key negotiation using Elliptic Curve Diffie-Hellman(ECDH) in the registration part of the protocol to protect the credentials of the devices and at the same time it minimizes the computation cost on the devices. At the end of the authentication, key agreement based on the symmetric key cryptography is established between the sensor devices and the gateway. Further, Elliptic Curve Integrated Encryption Scheme (ECIES) method is used to avoid the possibility of man-in-the-middle attack(MITM) in the registration phase of the previous protocol. An informal security verification of the protocols is presented which proves that they are resilient against perception layer attacks. The performance evaluation based on the metrics such as execution time, communication cost, computation cost of the protocol has been performed after the protocol is simulated in the Cooja simulator under Contiki OS environment. Further, the comparison results with the existing protocols show that the proposed system is lightweight as it provides low computation cost and better execution time
    corecore