3 research outputs found

    Computationally Inferred Genealogical Networks Uncover Long-Term Trends in Assortative Mating

    Full text link
    Genealogical networks, also known as family trees or population pedigrees, are commonly studied by genealogists wanting to know about their ancestry, but they also provide a valuable resource for disciplines such as digital demography, genetics, and computational social science. These networks are typically constructed by hand through a very time-consuming process, which requires comparing large numbers of historical records manually. We develop computational methods for automatically inferring large-scale genealogical networks. A comparison with human-constructed networks attests to the accuracy of the proposed methods. To demonstrate the applicability of the inferred large-scale genealogical networks, we present a longitudinal analysis on the mating patterns observed in a network. This analysis shows a consistent tendency of people choosing a spouse with a similar socioeconomic status, a phenomenon known as assortative mating. Interestingly, we do not observe this tendency to consistently decrease (nor increase) over our study period of 150 years.Comment: This is a pre-print of an article appearing in the proceedings of the Web Conference (WWW 2018

    Linking Scottish vital event records using family groups

    Get PDF
    Funding: This work was supported by ESRC Grants ES/K00574X/2 “Digitising Scotland” and ES/L007487/1 “Administrative Data Research Centre – Scotland.”The reconstitution of populations through linkage of historical records is a powerful approach to generate longitudinal historical microdata resources of interest to researchers in various fields. Here we consider automated linking of the vital events recorded in the civil registers of birth, death and marriage compiled in Scotland, to bring together the various records associated with the demographic events in the life course of each individual in the population. From the histories, the genealogical structure of the population can then be built up. Rather than apply standard linkage techniques to link the individuals on the available certificates, we explore an alternative approach, inspired by the family reconstitution techniques adopted by historical demographers, in which the births of siblings are first linked to form family groups, after which intergenerational links between families can be established. We report a small-scale evaluation of this approach, using two district-level data sets from Scotland in the late nineteenth century, for which sibling links have already been created by demographers. We show that quality measures of up to 83% can be achieved on these data sets (using F-Measure, a combination of precision and recall). In the future, we intend to compare the results with a standard linkage approach and to investigate how these various methods may be used in a project which aims to link the entire Scottish population from 1856 to 1973.PostprintPeer reviewe
    corecore