100 research outputs found

    Large-scale parallelization of partial evaluations in evolutionary algorithms for real-world problems

    Get PDF
    The importance and potential of Gray-Box Optimization (GBO) with evolutionary algorithms is becoming increasingly clear lately, both for benchmark and real-world problems. We consider the GBO setting where partial evaluations are possible, meaning that sub-functions of the evaluation function are known and can be exploited to improve optimization efficiency. In this paper, we show that the efficiency of GBO can be greatly improved through large-scale parallelism, exploiting the fact that each evaluation function requires the calculation of a number of independent sub-functions. This is especially interesting for real-world problems where often the majority of the computational effort is spent on the evaluation function. Moreover, we show how the best parallelization technique largely depends on factors including the number of sub-functions and their required computation time, revealing that for different parts of the optimization the best parallelization technique should be selected based on these factors. As an illustration, we show how large-scale parallelization can be applied to optimization of high-dose-rate brachytherapy treatment plans for prostate cancer. We find that use of a modern Graphics Processing Unit (GPU) was the most efficient parallelization technique in all realistic scenari

    Fast and insightful bi-objective optimization for prostate cancer treatment planning with high-dose-rate brachytherapy

    Get PDF
    Purpose: Prostate high-dose-rate brachytherapy (HDR-BT) planning involves determining the movement that a high-strength radiation stepping source travels through the patient's body, such that the resulting radiation dose distribution sufficiently covers tumor volumes and safely spares nearby healthy organs from radiation risks. The Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA) has been shown to be able to effectively handle this inherent bi-objective nature of HDR-BT planning. However, in clinical practice there is a very restricted planning time budget (often less than 1 h) for HDR-BT planning, and a considerable amount of running time needs to be spent before MO-RV-GOMEA finds a good trade-off front of treatment plans (about20–30 min on a single CPU core) with sufficiently accurate dose calculations, limiting the applicability of the approach in the clinic. To address this limitation, we propose an efficiency enhancement technique for MO-RV-GOMEA solving the bi-objective prostate HDR-BT planning problem.Methods: Dose-Volume (DV) indices are often used to assess the quality of HDR-BT plans. The accuracy of these indices depends on the number of dose calculation points at which radiation doses are computed. These are randomly uniformly sampled inside target volumes and organs at risk. In available HDR-BT planning optimization algorithms, the number of dose calculation points is fixed. The more points are used, the better the accuracy of the obtained results will be, but also the longer the algorithms need to be run. In this work, we introduce a so-called multi-resolution scheme that gradually increases the number of dose calculation points during the optimization run such that the running time can be substantially reduced without compromising on the accuracy of the obtained results.Results and conclusion: Experiments on a data set of 18 patient cases show that with the multi-resolution scheme, MO-RV-GOMEA can achieve a sufficiently good trade-off front of treatment plans after five minutes of running time on a single CPU core (4–6 times faster than the old approach with a fixed number of dose calculation points). When the optimization with the multi-resolution scheme is run on a quad-core machine, five minutes are enough to obtain trade-off fronts that are nearly as good as those obtained by running optimization with the old approach in one hour (i.e., 12 times faster). This leaves ample time to perform the selection of the preferred treatment plan from the trade-off front for the specific patient at hand. Furthermore, comparisons with real clinical treatment plans, which were manually made by experienced BT planners within 30–60 min, confirm that the plans obtained by our approach are superior in terms of DV indices. These results indicate that our proposed approach has the potential to be employed in clinical practice.</p

    Robust evolutionary bi-objective optimization for prostate cancer treatment with high-dose-rate brachytherapy

    Get PDF
    We address the real-world problem of automating the design of high-quality prostate cancer treatment plans in case of high-dose-rate brachytherapy, a form of internal radiotherapy. For this, recently a bi-objective real-valued problem formulation was introduced. With a GPU parallelization of the Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA), good treatment plans were found in clinically acceptable running times. However, optimizing a treatment plan and delivering it to the patient in practice is a two-stage decision process and involves a number of uncertainties. Firstly, there is uncertainty in the identified organ boundaries due to the limited resolution of the medical images. Secondly, the treatment involves placing catheters inside the patient, which always end up (slightly) different from what was optimized. An important factor is therefore the robustness of the final treatment plan to these uncertainties. In this work, we show how we can extend the evolutionary optimization approach to find robust plans using multiple scenarios without linearly increasing the amount of required computation effort, as well as how to deal with these uncertainties efficiently when taking into account the sequential decision-making moments. The performance is tested on three real-world patient cases. We find that MO-RV-GOMEA is equally well capable of solving the more complex robust problem formulation, resulting in a more realistic reflection of the treatment plan qual

    Adaptive objective configuration in bi-objective evolutionary optimization for cervical cancer brachytherapy treatment planning

    Get PDF
    The Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA) has been proven effective and eficient in solving real-world problems. A prime example is optimizing treatment plans for prostate cancer brachytherapy, an internal form of radiation treatment, for which equally important clinical aims from a base protocol are grouped into two objectives and bi-objectively optimized. This use of MO-RV-GOMEA was recently successfully introduced into clinical practice. Brachytherapy can also play an important role in treating cervical cancer. However, using the same approach to optimize treatment plans often does not immediately lead to clinically desirable results. Concordantly, medical experts indicate that they use additional aims beyond the cervix base protocol. Moreover, these aims have different priorities and can be patient-specifically adjusted. For this reason, we propose a novel adaptive objective configuration method to use with MO-RV-GOMEA so that we can accommodate additional aims of this nature. Based on results using only the base protocol, in consultation with medical experts, we configured key additional aims. We show how, for 10 patient cases, the new approach achieves the intended result, properly taking into account the additional aims. Consequently, plans resulting from the new approach are preferred by medical specialists in 8/10 cases

    Morea: A GPU-accelerated evolutionary algorithm for multi-objective deformable registration of 3d medical images

    Get PDF
    Finding a realistic deformation that transforms one image into another, in case large deformations are required, is considered a key challenge in medical image analysis. Having a proper image registration approach to achieve this could unleash a number of applications requiring information to be transferred between images. Clinical adoption is currently hampered by many existing methods requiring extensive configuration effort before each use, or not being able to (realistically) capture large deformations. A recent multi-objective approach that uses the Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA) and a dual-dynamic mesh transformation model has shown promise, exposing the trade-offs inherent to image registration problems and modeling large deformations in 2D. This work builds on this promise and introduces MOREA: the first evolutionary algorithm-based multi-objective approach to deformable registration of 3D images capable of tackling large deformations. MOREA includes a 3D biomechanical mesh model for physical plausibility and is fully GPU-accelerated. We compare MOREA to two state-of-the-art approaches on abdominal CT scans of 4 cervical cancer patients, with the latter two approaches configured for the best results per patient. Without requiring per-patient configuration, MOREA significantly outperforms these approaches on 3 of the 4 patients that represent the most difficult cases
    • …
    corecore