49 research outputs found

    Exponential stability via aperiodically intermittent control of complex-variable time delayed chaotic systems

    Get PDF
    summary:This paper focuses on the problem of exponential stability analysis of uncertain complex-variable time delayed chaotic systems, where the parameters perturbation are bounded assumed. The aperiodically intermittent control strategy is proposed to stabilize the complex-variable delayed systems. By taking the advantage of Lyapunov method in complex field and utilizing inequality technology, some sufficient conditions are derived to ensure the stability of uncertain complex-variable delayed systems, where the constrained time delay are considered in the conditions obtained. To protrude the availability of the devised stability scheme, simulation examples are ultimately demonstrated

    Finite-time synchronisation of neural networks with discrete and distributed delays via periodically intermittent memory feedback control

    Get PDF
    In this paper, finite-time synchronization between two chaotic systems with discrete and distributed delays is investigated by using periodically intermittent memory feedback control. Based on finite-time stability theory, some novel and effective synchronization criteria of intermit- tent control are derived by means of linear matrix inequalities (LMIs) and differential inequality techniques. Furthermore, a necessary condition of finite-time synchronization of intermittent con- trol is given for neural networks with discrete and distributed delays. A numerical example on two chaotic neural networks shows the effectiveness and correctness of the derived theoretical results. In addition, a secure communication synchronization problem is presented to demonstrate practical effectiveness of the proposed method.National Natural Science Foundation of China (Grant No. 61273183, No. 61374028 and No. 61374085).http://www.ietdl.orgIET-CTAhb2016Electrical, Electronic and Computer Engineerin

    Finite-time stochastic synchronization of fuzzy bi-directional associative memory neural networks with Markovian switching and mixed time delays via intermittent quantized control

    Get PDF
    We are concerned in this paper with the finite-time synchronization problem for fuzzy bi-directional associative memory neural networks with Markovian switching, discrete-time delay in leakage terms, continuous-time and infinitely distributed delays in transmission terms. After detailed analysis, we come up with an intermittent quantized control for the concerned bi-directional associative memory neural network. By designing an elaborate Lyapunov-Krasovskii functional, we prove under certain additional conditions that the controlled network is stochastically synchronizable in finite time: The 1st moment of every trajectory of the error network system associated to the concerned controlled network tends to zero as time approaches a finite instant (the settling time) which is given explicitly, and remains to be zero constantly thereupon. In the meantime, we present a numerical example to illustrate that the synchronization control designed in this paper is indeed effective. Since the concerned fuzzy network includes Markovian jumping and several types of delays simultaneously, and it can be synchronized in finite time by our suggested control, as well as the suggested intermittent control is quantized which could reduce significantly the control cost, the theoretical results in this paper are rich in mathematical implication and have wide potential applicability in the real world

    Finite-/fixed-time synchronization of leakage and discrete delayed Hopfield neural networks with diffusion effects

    Get PDF
    In this paper, the problem on finite-/fixed-time synchronization (FFTS) is investigated for a class of diffusive Hopfield neural networks with leakage and discrete delays. Some new and useful criteria independent on time delays but dependent on the diffusion coefficients are established to guarantee the FFTS for the addressed network model under a unified framework. In sharp contrast to the existed results which can only finite-timely or fixed-timely synchronize the systems with both diffusion effects and leakage delays, the theoretical results of this paper are more general and practical. Finally, a numerical example is presented to show the effectiveness of the proposed control methods

    A switching control for finite-time synchronization of memristor-based BAM neural networks with stochastic disturbances

    Get PDF
    This paper deals with the finite-time stochastic synchronization for a class of memristorbased bidirectional associative memory neural networks (MBAMNNs) with time-varying delays and stochastic disturbances. Firstly, based on the physical property of memristor and the circuit of MBAMNNs, a MBAMNNs model with more reasonable switching conditions is established. Then, based on the theory of Filippov’s solution, by using Lyapunov–Krasovskii functionals and stochastic analysis technique, a sufficient condition is given to ensure the finite-time stochastic synchronization of MBAMNNs with a certain controller. Next, by a further discussion, an errordependent switching controller is given to shorten the stochastic settling time. Finally, numerical simulations are carried out to illustrate the effectiveness of theoretical results

    Exponential Synchronization of a Class of N

    Get PDF
    corecore