127,679 research outputs found

    On the density distribution across space: a probabilistic approach

    Get PDF
    This paper aims at providing a Bayesian parametric framework to tackle the accessibility problem across space in urban theory. Adopting continuous variables in a probabilistic setting we are able to associate with the distribution density to the Kendall's tau index and replicate the general issues related to the role of proximity in a more general context. In addition, by referring to the Beta and Gamma distribution, we are able to introduce a differentiation feature in each spatial unit without incurring in any a-priori definition of territorial units. We are also providing an empirical application of our theoretical setting to study the density distribution of the population across Massachusetts.Agglomerations, Bayesian inference, Distance, Gibbs sampling, Kendall's tau index, Population density.

    Inferring Synaptic Structure in presence of Neural Interaction Time Scales

    Get PDF
    Biological networks display a variety of activity patterns reflecting a web of interactions that is complex both in space and time. Yet inference methods have mainly focused on reconstructing, from the network's activity, the spatial structure, by assuming equilibrium conditions or, more recently, a probabilistic dynamics with a single arbitrary time-step. Here we show that, under this latter assumption, the inference procedure fails to reconstruct the synaptic matrix of a network of integrate-and-fire neurons when the chosen time scale of interaction does not closely match the synaptic delay or when no single time scale for the interaction can be identified; such failure, moreover, exposes a distinctive bias of the inference method that can lead to infer as inhibitory the excitatory synapses with interaction time scales longer than the model's time-step. We therefore introduce a new two-step method, that first infers through cross-correlation profiles the delay-structure of the network and then reconstructs the synaptic matrix, and successfully test it on networks with different topologies and in different activity regimes. Although step one is able to accurately recover the delay-structure of the network, thus getting rid of any \textit{a priori} guess about the time scales of the interaction, the inference method introduces nonetheless an arbitrary time scale, the time-bin dtdt used to binarize the spike trains. We therefore analytically and numerically study how the choice of dtdt affects the inference in our network model, finding that the relationship between the inferred couplings and the real synaptic efficacies, albeit being quadratic in both cases, depends critically on dtdt for the excitatory synapses only, whilst being basically independent of it for the inhibitory ones

    Density-Based Semantics for Reactive Probabilistic Programming

    Full text link
    Synchronous languages are now a standard industry tool for critical embedded systems. Designers write high-level specifications by composing streams of values using block diagrams. These languages have been extended with Bayesian reasoning to program state-space models which compute a stream of distributions given a stream of observations. However, the semantics of probabilistic models is only defined for scheduled equations -- a significant limitation compared to dataflow synchronous languages and block diagrams which do not require any ordering. In this paper we propose two schedule agnostic semantics for a probabilistic synchronous language. The key idea is to interpret probabilistic expressions as a stream of un-normalized density functions which maps random variable values to a result and positive score. The co-iterative semantics interprets programs as state machines and equations are computed using a fixpoint operator. The relational semantics directly manipulates streams and is thus a better fit to reason about program equivalence. We use the relational semantics to prove the correctness of a program transformation required to run an optimized inference algorithm for state-space models with constant parameters

    D3^3PO - Denoising, Deconvolving, and Decomposing Photon Observations

    Full text link
    The analysis of astronomical images is a non-trivial task. The D3PO algorithm addresses the inference problem of denoising, deconvolving, and decomposing photon observations. Its primary goal is the simultaneous but individual reconstruction of the diffuse and point-like photon flux given a single photon count image, where the fluxes are superimposed. In order to discriminate between these morphologically different signal components, a probabilistic algorithm is derived in the language of information field theory based on a hierarchical Bayesian parameter model. The signal inference exploits prior information on the spatial correlation structure of the diffuse component and the brightness distribution of the spatially uncorrelated point-like sources. A maximum a posteriori solution and a solution minimizing the Gibbs free energy of the inference problem using variational Bayesian methods are discussed. Since the derivation of the solution is not dependent on the underlying position space, the implementation of the D3PO algorithm uses the NIFTY package to ensure applicability to various spatial grids and at any resolution. The fidelity of the algorithm is validated by the analysis of simulated data, including a realistic high energy photon count image showing a 32 x 32 arcmin^2 observation with a spatial resolution of 0.1 arcmin. In all tests the D3PO algorithm successfully denoised, deconvolved, and decomposed the data into a diffuse and a point-like signal estimate for the respective photon flux components.Comment: 22 pages, 8 figures, 2 tables, accepted by Astronomy & Astrophysics; refereed version, 1 figure added, results unchanged, software available at http://www.mpa-garching.mpg.de/ift/d3po
    • …
    corecore