21 research outputs found

    Poly-Dimension of Antimatroids

    Get PDF

    Unlabeled sample compression schemes and corner peelings for ample and maximum classes

    Full text link
    We examine connections between combinatorial notions that arise in machine learning and topological notions in cubical/simplicial geometry. These connections enable to export results from geometry to machine learning. Our first main result is based on a geometric construction by Tracy Hall (2004) of a partial shelling of the cross-polytope which can not be extended. We use it to derive a maximum class of VC dimension 3 that has no corners. This refutes several previous works in machine learning from the past 11 years. In particular, it implies that all previous constructions of optimal unlabeled sample compression schemes for maximum classes are erroneous. On the positive side we present a new construction of an unlabeled sample compression scheme for maximum classes. We leave as open whether our unlabeled sample compression scheme extends to ample (a.k.a. lopsided or extremal) classes, which represent a natural and far-reaching generalization of maximum classes. Towards resolving this question, we provide a geometric characterization in terms of unique sink orientations of the 1-skeletons of associated cubical complexes

    Enumerating kk-arc-connected orientations

    Get PDF
    12 pagesWe study the problem of enumerating the kk-arc-connected orientations of a graph GG, i.e., generating each exactly once. A first algorithm using submodular flow optimization is easy to state, but intricate to implement. In a second approach we present a simple algorithm with delay O(knm2)O(knm^2) and amortized time O(m2)O(m^2), which improves over the analysis of the submodular flow algorithm. As ingredients, we obtain enumeration algorithms for the α\alpha-orientations of a graph GG in delay O(m2)O(m^2) and for the outdegree sequences attained by kk-arc-connected orientations of GG in delay O(knm2)O(knm^2)

    Rowmotion and generalized toggle groups

    Full text link
    We generalize the notion of the toggle group, as defined in [P. Cameron-D. Fon-der-Flaass '95] and further explored in [J. Striker-N. Williams '12], from the set of order ideals of a poset to any family of subsets of a finite set. We prove structure theorems for certain finite generalized toggle groups, similar to the theorem of Cameron and Fon-der-Flaass in the case of order ideals. We apply these theorems and find other results on generalized toggle groups in the following settings: chains, antichains, and interval-closed sets of a poset; independent sets, vertex covers, acyclic subgraphs, and spanning subgraphs of a graph; matroids and convex geometries. We generalize rowmotion, an action studied on order ideals in [P. Cameron-D. Fon-der-Flaass '95] and [J. Striker-N. Williams '12], to a map we call cover-closure on closed sets of a closure operator. We show that cover-closure is bijective if and only if the set of closed sets is isomorphic to the set of order ideals of a poset, which implies rowmotion is the only bijective cover-closure map.Comment: 26 pages, 5 figures, final journal versio
    corecore