10 research outputs found

    Review of Development Stages in the Conceptual Design of an Electro Hydrostatic Actuator for Robotics

    Get PDF
    The design of modern robotic devices faces numerous requirements and limitations which are related to optimization and robustness. Consequently, these stringent requirements have caused improvements in many engineering areas and lead to development of new optimization methods which better handle new complex products designed for application in industrial robots. One of the newly developed methods used in industrial robotics is the concept of a self-contained power device, an Electro-Hydrostatic Actuator (EHA). EHA devices were designed with a central idea, to avoid the possible drawbacks which were present in other types of actuators that are currently used in robotic systems. This paper is a review of the development phases of an EHA device for robotic applications. An overview of the advantages and disadvantages related to current EHA designs are presented, and finally possible ideas for future developments are suggested

    Innovative robot hand designs of reduced complexity for dexterous manipulation

    Get PDF
    This thesis investigates the mechanical design of robot hands to sensibly reduce the system complexity in terms of the number of actuators and sensors, and control needs for performing grasping and in-hand manipulations of unknown objects. Human hands are known to be the most complex, versatile, dexterous manipulators in nature, from being able to operate sophisticated surgery to carry out a wide variety of daily activity tasks (e.g. preparing food, changing cloths, playing instruments, to name some). However, the understanding of why human hands can perform such fascinating tasks still eludes complete comprehension. Since at least the end of the sixteenth century, scientists and engineers have tried to match the sensory and motor functions of the human hand. As a result, many contemporary humanoid and anthropomorphic robot hands have been developed to closely replicate the appearance and dexterity of human hands, in many cases using sophisticated designs that integrate multiple sensors and actuators---which make them prone to error and difficult to operate and control, particularly under uncertainty. In recent years, several simplification approaches and solutions have been proposed to develop more effective and reliable dexterous robot hands. These techniques, which have been based on using underactuated mechanical designs, kinematic synergies, or compliant materials, to name some, have opened up new ways to integrate hardware enhancements to facilitate grasping and dexterous manipulation control and improve reliability and robustness. Following this line of thought, this thesis studies four robot hand hardware aspects for enhancing grasping and manipulation, with a particular focus on dexterous in-hand manipulation. Namely: i) the use of passive soft fingertips; ii) the use of rigid and soft active surfaces in robot fingers; iii) the use of robot hand topologies to create particular in-hand manipulation trajectories; and iv) the decoupling of grasping and in-hand manipulation by introducing a reconfigurable palm. In summary, the findings from this thesis provide important notions for understanding the significance of mechanical and hardware elements in the performance and control of human manipulation. These findings show great potential in developing robust, easily programmable, and economically viable robot hands capable of performing dexterous manipulations under uncertainty, while exhibiting a valuable subset of functions of the human hand.Open Acces

    Space station systems: A bibliography with indexes (supplement 10)

    Get PDF
    This bibliography lists 1,422 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included

    Technology for large space systems: A bibliography with indexes (supplement 20)

    Get PDF
    This bibliography lists 694 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July, 1988 and December, 1988. Its purpose is to provide helpful information to the researcher or manager engaged in the development of technologies related to large space systems. Subject areas include mission and program definition, design techniques, structural and thermal analysis, structural dynamics and control systems, electronics, advanced materials, assembly concepts, and propulsion

    This New Ocean: A History of Project Mercury

    Get PDF
    When Congress created the National Aeronautics and Space Administration (NASA) in 1958, it charged NASA with the responsibility "to contribute materially to . . . the expansion of human knowledge of phenomena in the atmosphere and space" and "provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof." NASA wisely interpreted this mandate to include responsibility for documenting the epochal progress of which it is the focus. The result has been the development of a historical program by NASA as unprecedented as the task of extending man's mobility beyond his planet. This volume is not only NASA's accounting of its obligation to disseminate information to our current generation of Americans. It also fulfills, as do all of NASA's future-oriented scientific-technological activities, the further obligation to document the present as the heritage of the future. The wide-ranging NASA history program includes chronicles of day-to-day space activities; specialized studies of particular fields within space science and technology; accounts of NASA's efforts in organization and management, where its innovations, while less known to the public than its more spectacular space shots, have also been of great significance; narratives of the growth and expansion of the space centers throughout the country, which represent in microcosm many aspects of NASA's total effort; program histories, tracing the successes- and failures- of the various projects that mark man's progress into the Space Age; and a history of NASA itself, incorporating in general terms the major problems and challenges, and the responses thereto, of our entire civilian space effort. The volume presented here is a program history, the first in a series telling of NASA's pioneering steps into the Space Age. It deals with the first American manned-spaceflight program: Project Mercury. Although some academicians might protest that this is "official" history, it is official only in the fact that it has been prepared and published with the support and cooperation of NASA. It is not "official" history in the sense of presenting a point of view supposedly that of NASA officialdom-if anyone could determine what the "point of view" of such a complex organism might be. Certainly, the authors were allowed to pursue their task with the fullest freedom and in accordance with the highest scholarly standards of the history profession
    corecore