733 research outputs found

    A New Combination of RAKE Receiver and Adaptive Antenna Array Beamformer for Multiuser Detection in WCDMA Systems

    Get PDF
    The aim of this paper is to combine smart antenna beamforming and RAKE receiver in wideband code division multiple access (WCDMA). The proposed method combines spatial diversity as well as temporal diversity to improve the performance and overcome both interferences and multipath fading. This investigation has focused on one of the new proposed blind beamforming algorithms. It is based on constrained constant modulus (CCM) algorithm which is used for deriving a recursive-least-squares (RLS-) type optimization algorithm. We illustrate the comparison of bit error rate (BER) of the proposed receiver with simple correlator and also 1D-RAKE receiver in multiuser detection (MUD) WCDMA. The simulation results show that the proposed 2D-RAKE receiver offers lower BER rather than conventional ones, that is, it is an effective solution for decreasing the effect of interference and increasing the capacity, in a joint state

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam

    IST-2000-30148 I-METRA: D4 Performance evaluation

    Get PDF
    This document considers the performance of multiantenna transmit/receive techniques in high-speed downlink and uplink packet access. The evaluation is done using both link and system level simulations by taking into account link adaptation and packet retransmissions. The document is based on the initial studies carried out in deliverables D3.1 and D3.2.Preprin

    Performance of the Smart Antenna Aided Generalized Multicarrier DS-CDMA Downlink using both Time-Domain Spreading and Steered Space-Time Spreading

    No full text
    In this contribution a generalized MC DS-CDMA system invoking smart antennas for improving the achievable performance in the downlink of the system is studied, which is capable of minimizing the downlink interference inflicted upon co-channel mobiles, while achieving frequency, time and spatial diversity. In the MC DS-CDMA system considered the transmitter employs multiple antenna arrays and each of the antenna arrays consists of several antenna elements. More specifically, the space-time transmitter processing scheme considered is based on the principles of Steered Space-Time Spreading (SSTS). Furthermore, the generalized MC DS-CDMA system employs time and frequency (TF)-domain spreading, where a user-grouping technique is employed for reducing the effects of multiuser interference

    Indoor Radio Measurement and Planning for UMTS/HSPDA with Antennas

    Get PDF
    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator\u27s point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product\u27s response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation and some important properties of antennas which must be considered when choosing an antenna for indoor radio propagation. The challenges of in-building network coverage and also the objectives of this thesis are also mentioned in this chapter. The evolution and standardization, network architecture, radio features and most importantly, the radio resource management features of UMTS/HSDPA are given in chapter two. In this chapter, the reason why Wideband Code Division Multiple Access (WCDMA) was specified and selected for 3G (UMTS) systems would be seen. The architecture of the radio access network, interfaces with the radio access network between base stations and radio network controllers (RNC), and the interface between the radio access network and the core network are also described in this chapter. The main features of HSDPA are mentioned at the end of the chapter. In chapter three the principles of the WCDMA air interface, including spreading, Rake reception, signal fading, power control and handovers are introduced. The different types and characteristics of the propagation environments and how they influence radio wave propagation are mentioned. UMTS transport, logical and physical channels are also mentioned, highlighting their significance and relationship in and with the network. Radio network planning for UMTS is discussed in chapter four. The outdoor planning process which includes dimensioning, detailed planning, optimization and monitoring is outlined. Indoor radio planning with distributed antenna systems (DAS), which is the idea and motivation behind this thesis work, is also discussed. The various antennas considered and the antenna that was selected for this thesis experiment was discussed in chapter five. The antenna radiation pattern, directivity, gain and input impedance were the properties of the antenna that were taken into consideration. The importance of the choice of the antenna for any particular type of indoor environment is also mentioned. In chapter six, the design and fabrication of the monopole antennas used for the experimental measurement is mentioned. The procedure for measurement and the equipment used are also discussed. The results gotten from the experiment are finally analyzed and discussed. In this chapter the effect of walls, floors, doors, ceilings and other obstacles on radio wave propagation will be seen. Finally, chapter seven concludes this thesis work and gives some directions for future work

    Space-time coding for CDMA-based wireless communication systems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2002Includes bibliographical references (leaves: 72-75)Text in English; Abstract: Turkish and Englishx, 75 leavesMultiple transmit antennas giving rise to diversity (transmit diversity) have been shown to increase downlink (base station to the mobile) capacity in cellular systems.The third generation partnership project (3GPP) for WCDMA has chosen space time transmit diversity (STTD) as the open loop transmit diversity technique for two transmit antennas.On the other hand, the CDMA 2000 has chosen space time spreading (STS) and orthogonal transmit diversity (OTD) as the open loop transmit diversity.In addition to all the standardization aspects, proposed contributions such as space time coding assisted double spread rake receiver (STC-DS-RR) are exist.In this thesis, open loop transmit diversity techniques of 3GPP, CDMA 2000 and existing contributions are investigated.Their performances are compared as a means of biterror- rate (BER) versus signal-to-noise ratio (SNR)

    Coherent and Differential Downlink Space-Time Steering Aided Generalised Multicarrier DS-CDMA

    No full text
    This paper presents a generalised MultiCarrier Direct Sequence Code Division Multiple Access (MC DS-CDMA) system invoking smart antennas for improving the achievable performance in the downlink. In this contribution, the MC DSCDMA transmitter employs an Antenna Array (AA) and Steered Space-Time Spreading (SSTS). Furthermore, the proposed system employs both Time and Frequency (TF) domain spreading for extending the capacity of the system, which is combined with a user-grouping technique for reducing the effects of Multi-User Interference (MUI). Moreover, to eliminate the high complexity Multiple Input Multiple Output (MIMO) channel estimation required for coherent detection, we also propose a Differential SSTS (DSSTS) scheme. More explicitly, for coherent SSTS detection MVNr number of channel estimates have to be generated, where M is the number of transmit AAs, V is the number of subcarriers and Nr is the number of receive antennas. This is a challenging task, which renders the low-complexity DSSTS scheme attractive. Index Terms—MIMO, MC DS-CDMA, beamforming, spacetime spreading, differential space-time spreading

    Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures

    No full text
    This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation

    Adaptive Space-Time-Spreading-Assisted Wideband CDMA Systems Communicating over Dispersive Nakagami-m Fading Channels

    No full text
    In this contribution, the performance of wideband code-division multiple-access (W-CDMA) systems using space-timespreading-(STS-) based transmit diversity is investigated, when frequency-selective Nakagami-m fading channels, multiuser interference, and background noise are considered. The analysis and numerical results suggest that the achievable diversity order is the product of the frequency-selective diversity order and the transmit diversity order. Furthermore, both the transmit diversity and the frequency-selective diversity have the same order of importance. Since W-CDMA signals are subjected to frequency-selective fading, the number of resolvable paths at the receiver may vary over a wide range depending on the transmission environment encountered. It can be shown that, for wireless channels where the frequency selectivity is sufficiently high, transmit diversity may be not necessitated. Under this case, multiple transmission antennas can be leveraged into an increased bitrate. Therefore, an adaptive STS-based transmission scheme is then proposed for improving the throughput ofW-CDMA systems. Our numerical results demonstrate that this adaptive STS-based transmission scheme is capable of significantly improving the effective throughput of W-CDMA systems. Specifically, the studied W-CDMA system’s bitrate can be increased by a factor of three at the modest cost of requiring an extra 0.4 dB or 1.2 dB transmitted power in the context of the investigated urban or suburban areas, respectively
    corecore